

INTERNATIONAL A-LEVEL PHYSICS

PH04

Unit 4 Energy and Energy resources

Mark scheme

January 2021

Version: 1.0 Final

MARK SCHEME - INTERNATIONAL A-LEVEL PHYSICS - PH04 - JANUARY 2021

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question	Answers	Additional comments/Guidelines	Mark	АО
01.1	Two from: ✓ ✓		2	AO1
	negligible forces between particles (except during collisions)			AO1
	volume of particles is negligible (compared to volume of container)	Accept "point particles/molecules"		
	particles collide elastically	Accept particles move randomly		
	collision duration is negligible compared to time between collisions	(24)		

Question	Answers	Additional comments/Guidelines	Mark	AO
01.2	Converts T to kelvin (285.5 K) \checkmark		4	AO1
	Uses $\frac{1}{2}m(c_{\text{rms}})^2 = \frac{3}{2}kT \checkmark$	Allow other formulae involving $(c_{\rm rms})^2$		AO2
	423 (m s ⁻¹) ✓	Using 12.5 °C for T gives $88.5 \text{ (m s}^{-1}\text{)}$		AO2
	Any 2 sf answer from some appropriate working ✓			AO4
Total			6	

Question	Answers	Additional comments/Guidelines	Mark	AO
02.1	154 (neutrons) seen ✓	May be seen as (252 – 98)	3	AO1
	Attempts to calculate a mass defect (expect 2.02 u) OR attempts to convert a mass in u to $kg \ensuremath{\checkmark}$	$(154 \text{ n} + 98 \text{ p}) = 254.04862 \text{ u} = 4.219 \times 10^{-25} \text{ kg}$ $m_{\text{Cf}} = 4.186 \times 10^{-25} \text{ kg}$		AO1 AO2
	$3.4 \times 10^{-27} (\text{kg}) \checkmark$	Allow 3.3×10^{-27} (kg)		

Question	Answers	Additional comments/Guidelines	Mark	АО
02.2	Calculates difference in mass, including 4 neutrons ✓ Converts mass difference to energy (u to eV, or kg to J) ✓ 210 (MeV) ✓	Expect 0.22532 u or 3.7×10 ⁻²⁸ kg	3	AO2 AO2 AO2
Total			6	

Question	Answers	Additional comments/Guidelines	Mark	AO
03.1	Acceptable method to obtain V and I values for maximum power ✓	Award zero marks for any attempt to get area	2	AO3 AO2
	(Uses $P = VI$ to get) 0.50 to 0.52 (W) \checkmark			

Question	Answers	Additional comments/Guidelines	Mark	AO
03.2	5 cells in series give 3.6 V ✓		4	AO1
	Evidence of combining cell resistances in series ✓			AO1
				AO2
	Evidence of combining cell resistances in parallel ✓			AO2
	(so array needed is) two parallel sets of 5 cells ✓	Accept a circuit diagram. (Condone incorrect symbol for solar cell.)		
Total			6	

Question	Answers	Additional comments/Guidelines	Mark	АО
04.1	Evidence of use of $\rho = \frac{m}{V}$		3	AO2
	Substitution of values into $pV = NkT$ OR $pV = nRT$	Allow 9.03×10^{27} if 1.5×10^4 moles used to		AO2 AO2
	$8.8 \times 10^{27} \checkmark$	multiply by $N_{\rm A}$, , 32

Question	Answers	Additional comments/Guidelines	Mark	AO
04.2	Uses $\frac{m}{N}$ to get molecular mass $\mathbf{OR} \frac{N}{N_{A}}$ to get number of		3	AO1
	moles (1.5×10 ⁴) ✓			AO2
	Uses $M = mN_A$ OR $M = \frac{m}{n}$	Award MP1 or 2 if seen in 04.1		AO2
	4.0 g mol^{-1} OR 4.1 g mol^{-1} \checkmark	Allow any consistent value and unit of molar mass		

Question	Answers	Additional comments/Guidelines	Mark	АО
04.3	Uses $Q = mc\Delta\theta$ OR $\frac{Q}{t} = \frac{m}{t}c\Delta\theta$	Condone power of ten error	3	AO3
	$\Delta\theta = 255 \text{ (K)} \checkmark$			AO2 AO2
	Adds their $\Delta\theta$ to 860	Expect 1100 (K)		

Question	Answers	Additional comments/Guidelines	Mark	AO
04.4	Work done by gas (so W is negative) \checkmark Heat transfers from gas (initially so Q is negative) \checkmark Use of 1st law ($\Delta U=Q+W$) to demonstrate that U decreases \checkmark		3	AO2 AO2 AO2
Total			12	

Question	Answers	Additional comments/Guidelines	Mark	AO
05.1	Substitutes into $\theta = \frac{1}{2} \alpha t^2$ Uses θ for 3 rotations (expect to see 6π)	Alternative method Identifies mean omega $6\pi/2.2$ \checkmark Identifies max omega (2 × mean omega) OR uses $\alpha = \frac{\Delta\omega}{t}$ \checkmark	3	AO2 AO1 AO2
	7.8 (rad s ⁻²) ✓	7.8 (rad s ⁻²) ✓		
	7.8 (rad s ⁻²) ✓	7.8 (rad s ⁻²) \checkmark		

Question	Answers	Additional comments/Guidelines	Mark	AO
05.2	Use of $mg - tension = mA$ or equivalent		2	AO3
	OR Use of torque = tension × r ✓ Two equations combined with correct manipulation ✓			AO3
	Two equations combined with correct manipulation			

Question	Answers	Additional comments/Guidelines	Mark	AO
05.3	Calculates torque ✓	torque = 0.0193 N m	3	AO3
	Uses torque = $I\alpha$			AO2
	$2.4 \times 10^{-3} \text{ or } 2.5 \times 10^{-3} \text{ (kg m}^2) \checkmark$	Allow 1 sf. Allow 8.6 for α , which gives $2.2 \times 10^{-3} \text{ kg m}^2$		AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
05.4	(Friction) provides opposing/resistive torque OR reduces the resultant torque (on disc) ✓ Reduces the (angular or linear) acceleration OR increases time to fall ✓	Accept energy/work done argument.	3	AO4 AO4 AO4
	Experimental value of I would be larger than actual I	MP3 must be consistent with their argument.		
Total			11	

Question	Answers	Additional comments/Guidelines	Mark	АО
06.1	Use of $mgh = 30 \times 10^{12}$ with $h = 120$, 130, or 140 m \checkmark	Condone power of ten error for energy	2	AO3
	$2.4 \times 10^{10} (kg) \checkmark$			AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
06.2	Uses efficiency to get input power or useful energy output ✓	Condone one power of ten error for MP1 and	3	AO1
	Uses energy = power × time ✓	MP2.		AO2
	3.8 (hours) ✓	Allow 2 marks for 5.65 (hours).		AO2

Question	Answers	Additional comments/Guidelines	Mark	АО
06.3	Idea that water needs to be pumped back to upper reservoir ✓	Credit sensible reference to 67% (from 0.82^2)	2	AO2 AO2
	Idea that pumping process is less than 100% efficient \checkmark			

MAINN JUILLINE	INTERNATIONAL A LEVEL I III SICS	

Question	Answers	Additional comments/Guidelines	Mark	AO
06.4	Used to meet surges in demand ✓ Short start-up time ✓ Store energy (from base load) at times of low demand ✓		3	AO3 AO3 AO3
Total			10	

Question	Answers	Additional comments/Guidelines	Mark	АО
07.1	nuclei must come within few femtometres to fuse ✓	Accept idea that strong nuclear force needs to dominate	2	AO1 AO1
	high kinetic energy needed to overcome (electrostatic) repulsion by nuclei ✓			7.51

Question	Answers	Additional comments/Guidelines	Mark	АО
07.2	$2.5 \times 10^{-14} (\text{J}) \checkmark$	(Ru)	1	AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
07.3	Same value/2.5 \times 10 ⁻¹⁴ (J) \checkmark		1	AO1

Question	Answers	Additional comments/Guidelines	Mark	АО
07.4	Idea that combined kinetic energy is available \checkmark Idea of kinetic energy (completely) transfers to electric potential energy (in a head on collision) \checkmark Refers to $V = \frac{Q}{4\pi\epsilon_0 r}$ AND $\Delta W = Q\Delta V$ OR $E = \frac{Q_1 Q_2}{4\pi\epsilon_0 r}$ \checkmark	MP1 or MP3 may be evident in a worked example. Only award MP3 if equations are used correctly.	3	AO3 AO3 AO3

Question	Answers	Additional comments/Guidelines	Mark	АО
07.5	Calculates two binding energies ✓	Expect 2.2246 MeV and 28.2956 MeV	3	AO2
	Attempt to calculate difference in energy ✓	Expect 8.4819 MeV		AO2
	Converts to J to give 1.4×10^{-12} (J) \checkmark			AO2

Question	Answers	Additional comments/Guidelines	Mark	АО
07.6	$m_{\rm He} = 4m_{\rm n}$ so $v_{\rm n} = 4v_{\rm He}$ (from conservation of momentum) \checkmark		3	AO3
	Argues for dependence of E_k on velocity eg $v_n = 4v_{He}$, so $E_{k,n} = 16E_{k,He}$ OR mass eg $m_{He} = 4m_n$ so $E_{k,He} = 4E_{k,n}$ \checkmark			AO3 AO3
	Shows that both effects lead to $E_{k,n} = 4E_{k,He}$ \checkmark			

Question	Answers	Additional comments/Guidelines	Mark	АО
07.7	One from: ✓		1	AO3
	Damage to reactor structural materials (on atomic level)			
	Damage to human tissue/cell/DNA due to radiation effects			
	Production of radioactive nuclides			
Total			14	

Question	Key
8	В
9	А
10	С
11	С
12	А
13	D
14	В
15	В
16	С
17	В
18	А
19	В
20	D
21	С
22	В

