INTERN	IATIONAL
AQA EXA	MINATIONS

OXFORI

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

Wednesday 20 June 2018

07:00 GMT

Time allowed: 2 hours

Materials

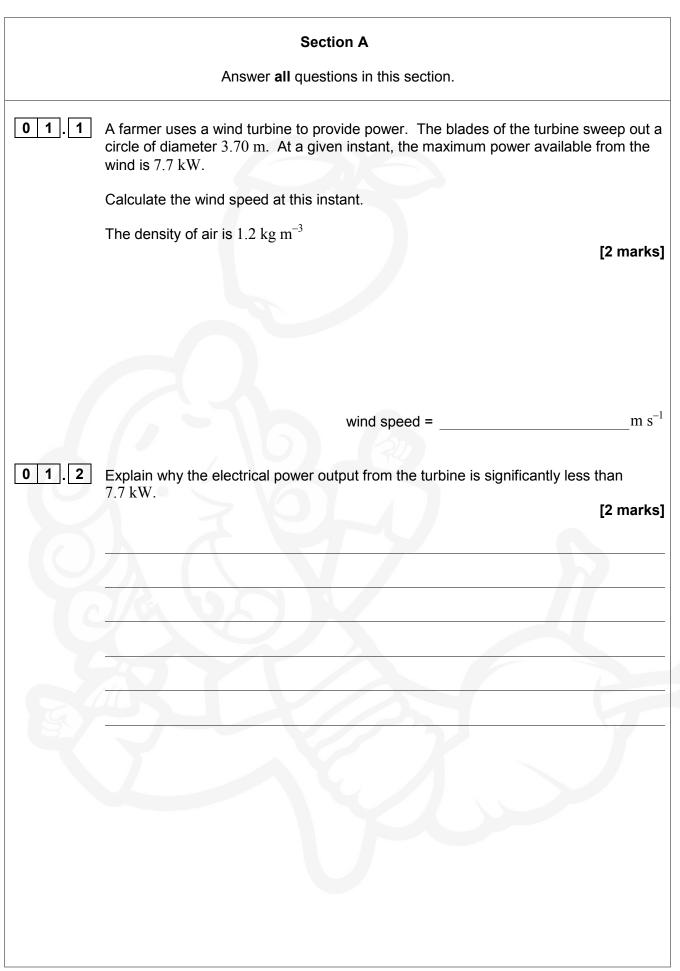
For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

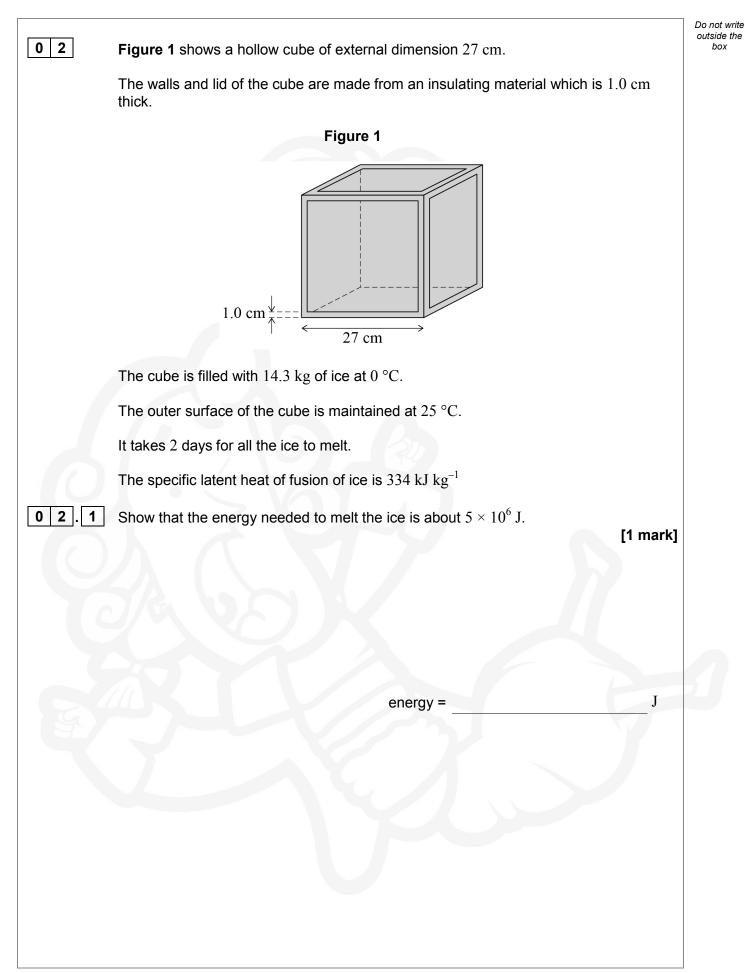
Information

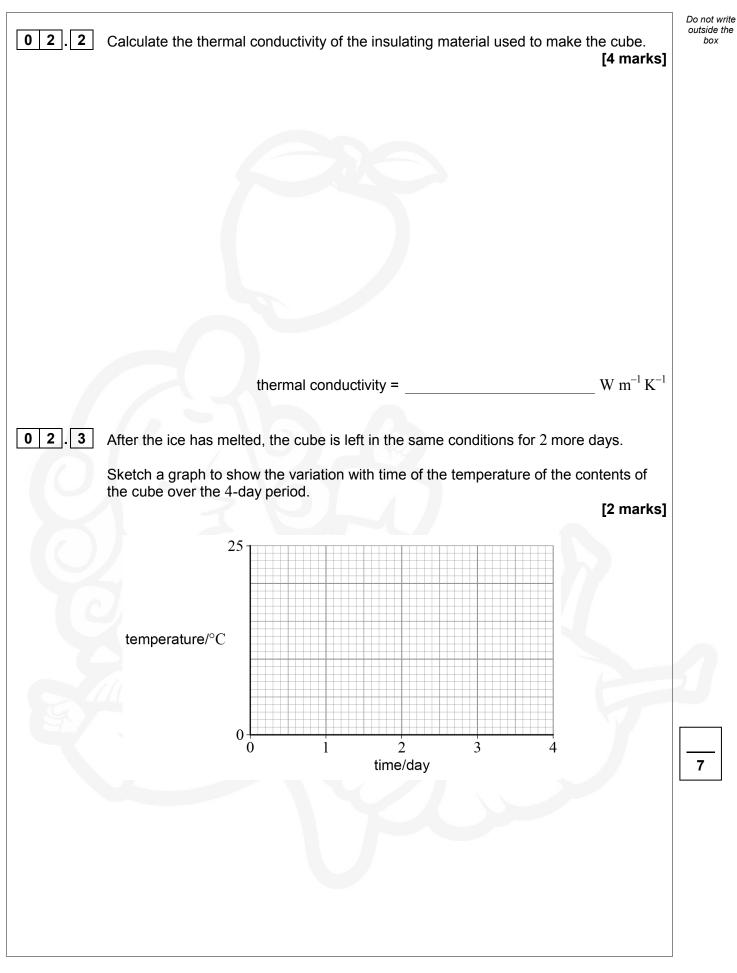

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6–35	
TOTAL	

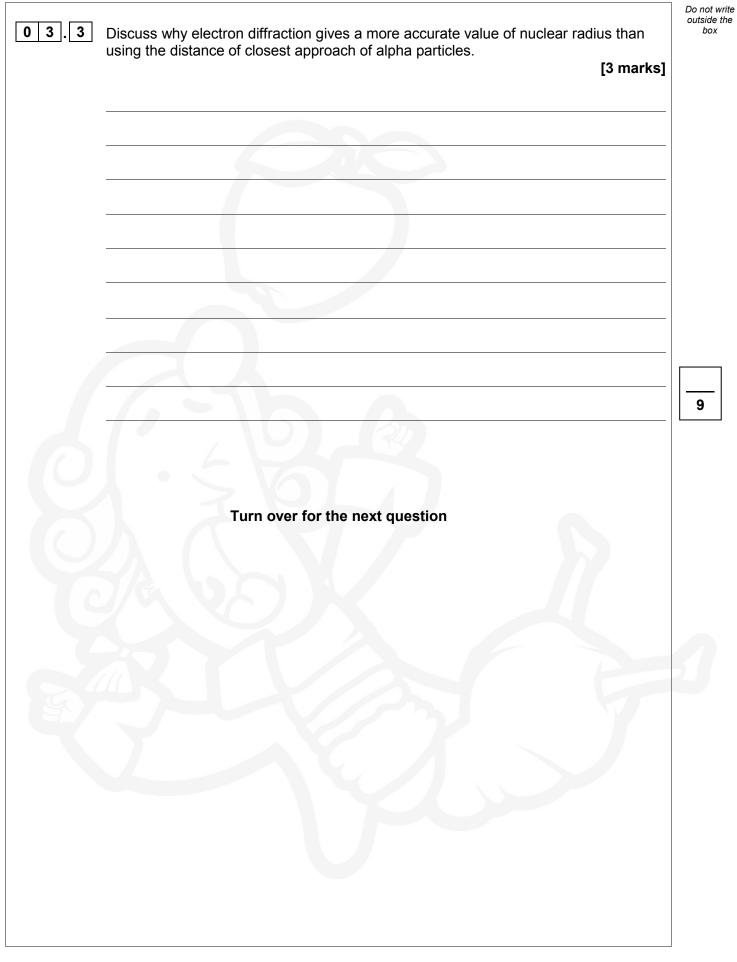
Do not write outside the

box

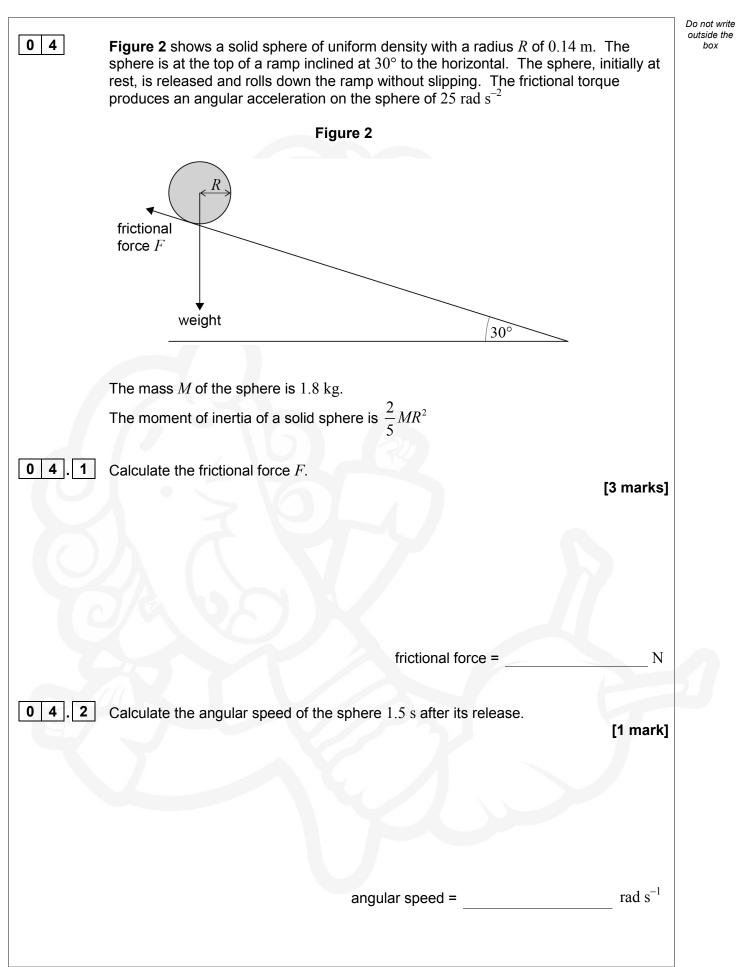




IB/M/Jun18/PH04


IB/M/Jun18/PH04

m


Do not write outside the box

0 3.1 An alpha particle, with an initial kinetic energy of 8.0 MeV, approaches the centre of a nucleus of gold $-197 \left({}^{197}_{79} \text{Au} \right)$. Calculate the distance of closest approach between the alpha particle and the nucleus. [3 marks] distance = 0 3 2 **Table 1** shows the nuclear radii *R* of three stable nuclides measured using electron diffraction. Table 1 Nuclide R / fm ${}_{4}^{9}\text{Be}$ 2.52 ${}^{12}_{6}C$ 2.79 ¹⁶₈O 3.02 A model of the nucleus predicts that the nuclear radius is proportional to the cube root of the nucleon number. Comment on the degree to which the data in Table 1 are consistent with this prediction. [3 marks]

04.3	Show that the sphere travels approximately 3.9 m along the ramp in the first 1.5 s of its motion.	Do not wri outside th box
	[4 marks]	
	Only date the made stice in second taken a second state and second states the first	
0 4 . 4	Calculate the reduction in gravitational potential energy of the sphere during the first 1.5 s.	
	[2 marks]	
	reduction in gravitational potential energy =J	
04.5	Calculate the increase in the rotational kinetic energy of the sphere during the first	
TO	1.5 s. [2 marks]	
	increase in rotational kinetic energy =J	
04.6	The sphere is now placed on a similar frictionless ramp.	
	State and explain how the lack of friction will affect the change in rotational kinetic	
	energy. [2 marks]	
		14

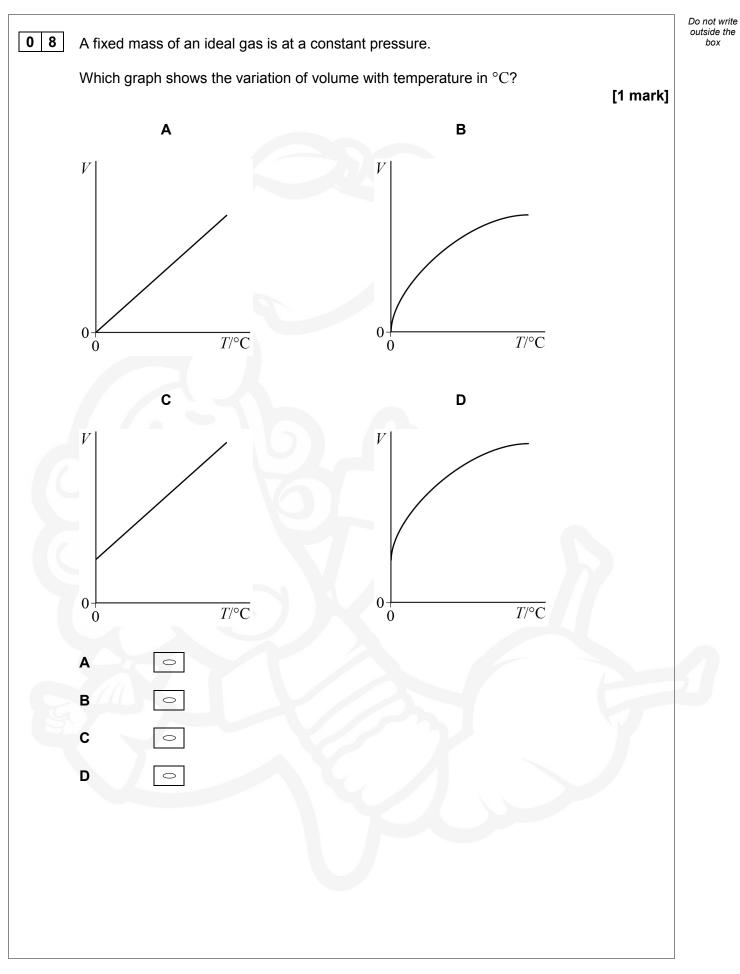
Do not write outside the

box

Figure 3 is a plot showing the variation with nucleon number of the binding energy per nucleon.

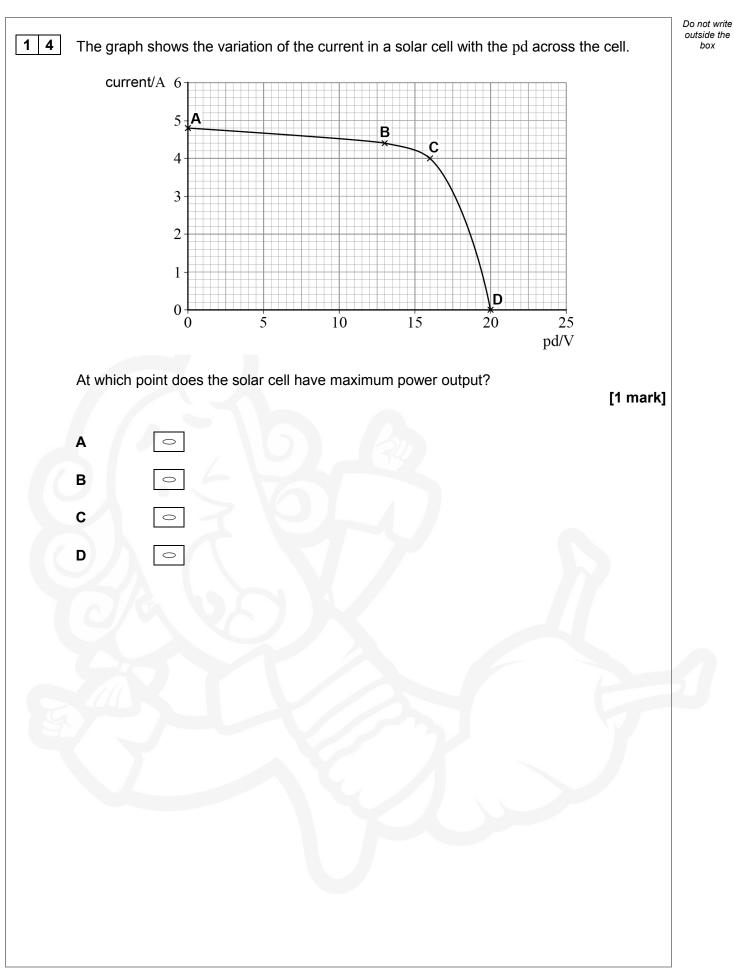
Figure 3 binding energy 10per nucleon / MeV 8 6 4 2-0-50 150 Ó 100 200 250 nucleon number 0 Explain with reference to Figure 3 why nuclear fusion can lead to the release of 5 1 energy. [3 marks]

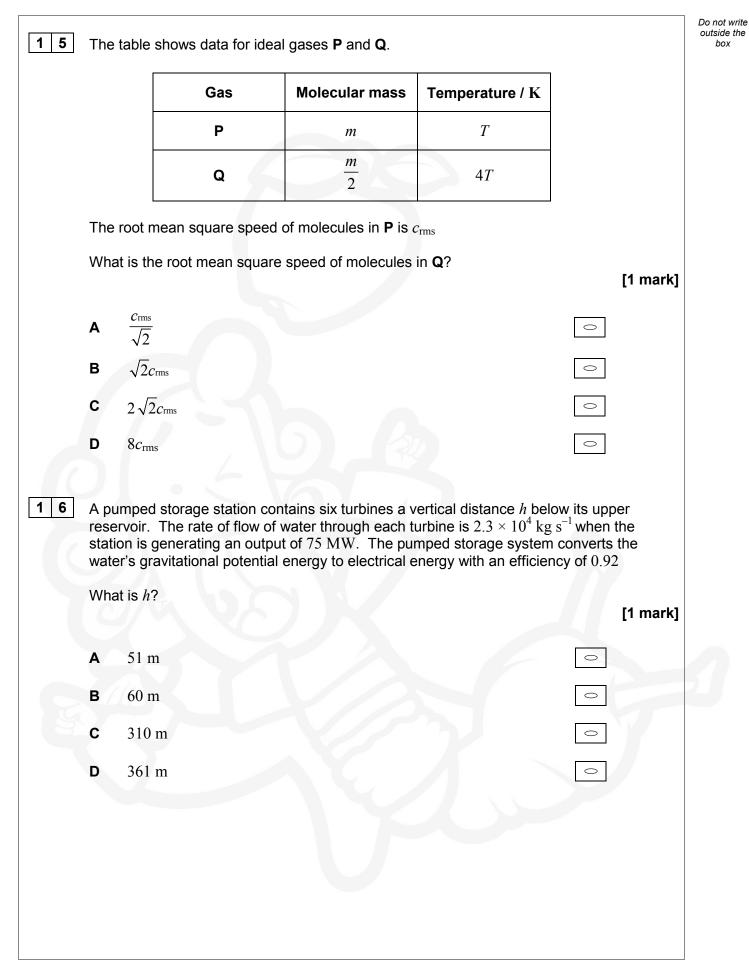
0 5.2	A uranium–235 nucleus undergoes induced fission to form two nuclei of equal mass.	Do not write outside the box
	Calculate, using Figure 3 , the energy in J released by this fission event. [5 marks]	
	energy released =J	
0 5.3	Describe, with reference to their energy, the role of neutrons in a thermal nuclear reactor.	
	[3 marks]	
	Question 5 continues on the next page	


	Section B	
Eac	h of the questions in this section is followed by four responses A	A, B, C and D.
	For each question select the best response.	
•	swer per question is allowed. estion, completely fill in the circle alongside the appropriate ans	wer.
CORRECT METH	WRONG METHODS 🐼 💿 📾 💋	
If you want t	o change your answer you must cross out your original answer	as shown. 💌
If you wish t shown.	o return to an answer previously crossed out, ring the answer yo	ou now wish to select as
	your working in the blank space around each question but this vadditional sheets for this working.	will not be marked.
	J	
0 6 The	e molecular mass of carbon dioxide is 44	
Hov	v many molecules are in $2.4~\mathrm{kg}$ of carbon dioxide?	
		[1 mark]
Α	1.1×10^{21}	0
в	$3.3 imes 10^{22}$	0
С	1.1×10^{25}	0
D	3.3×10^{25}	
	5.5 ~ 10	
		2
	Turn over for the next question	

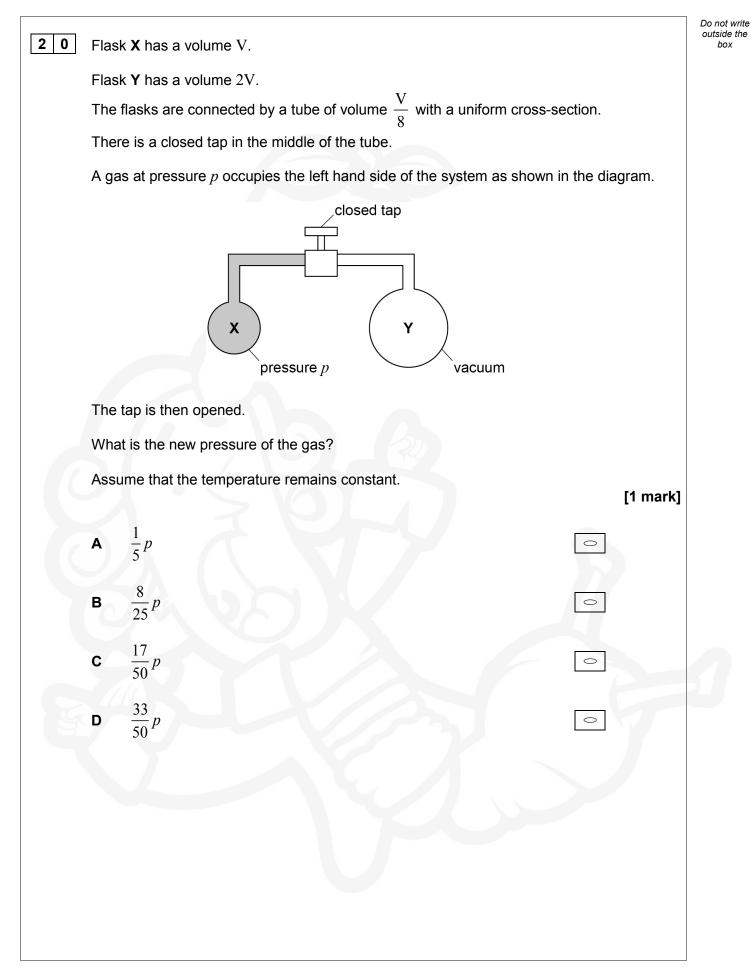
IB/M/Jun18/PH04

AKBAR M ACADEMY° www.akbaracademy.co.uk

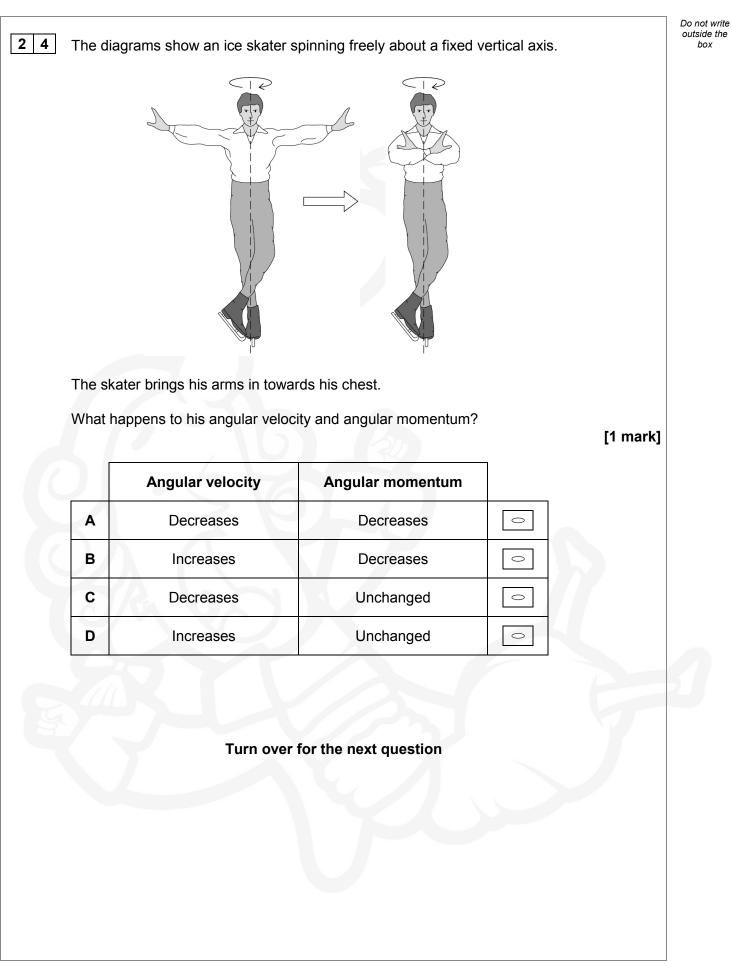

09	Which assumption is made about the particles when using the kinetic theory model of a gas?				
	0		[1 mark]		
	Α	They have negligible mass.]		
	В	They have negligible volume.]		
	С	They have the same speed.]		
	D	They travel in the same direction.]		
1 0		mple of oxygen gas is at a temperature of 30.0 °C. Jen has a molecular mass of 32			
	What	t is the root mean square speed of molecules in the sample?	[1 mark]		
	A	0.153 km s^{-1}]		
	в	0.486 km s^{-1}]		
	С	23.4 km s^{-1}]		
	D	236 km s ⁻¹			
11		gas molecules have velocities of $200\ m\ s^{-1}$, $-200\ m\ s^{-1}$, $300\ m\ s^{-1}$ and $-30\ ectively.$)0 m s ⁻¹		
	What	t is the root mean square speed of the molecules?	[1 mark]		
	Α	0 m s^{-1}			
	в	106 m s^{-1}			
	С	250 m s^{-1}]		
	D	255 m s^{-1}]		


1 2	The	nucleus $^{A}_{Z}$ X has a mass defect Δm .			Do not write outside the box
	mas	s of a proton = $m_{\rm p}$			
	mas	s of a neutron = m_n			
	mas	s of nucleus $_{\rm Z}^{\rm A}$ X = $m_{\rm x}$			
	Whic	ch expression is correct?		[1 mark]	
	Α	$\Delta m = m_{\rm x} - (Zm_{\rm n} + (A - Z)m_{\rm p})$	0		
	в	$\Delta m = ((A - Z)m_{\rm n} + Zm_{\rm p}) - m_{\rm x}$	0		
	С	$\Delta m = (Am_{\rm n} + (A - Z)m_{\rm p}) - m_{\rm x}$	0		
	D	$\Delta m = m_{\rm x} - (Am_{\rm n} + (A - Z)m_{\rm p})$	0		
1 3	The	mass defect of a nucleus exists because		[1 mark]	
	A	protons in the nucleus repel each other.	0		
	в	neutrons have a greater mass than protons.	0		
	с	work must be done to separate a nucleus into its constituent nucleons.	0		
	D	large nuclei are always more stable than small nuclei.	0		
		Turn over for the next question			

17

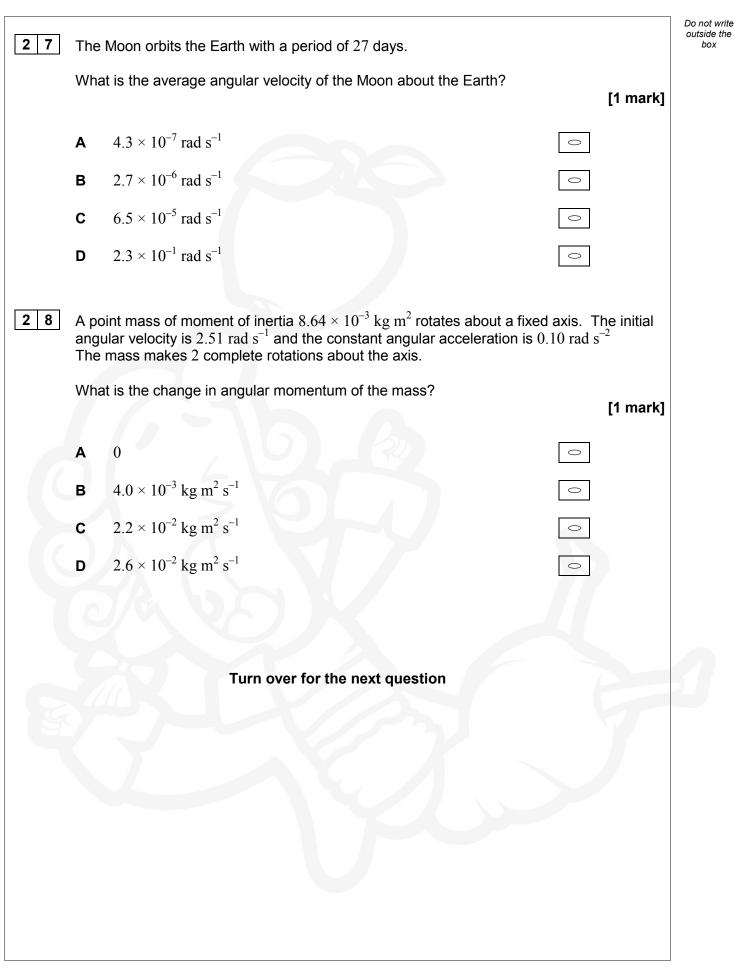


1 7	The	table show	ws data measured fo	r the Sun.				Do not write outside the box
			Power output / W		3.83×10^{26}			
			Maximum distance	from Mars / km	2.49×10^{8}			
			Minimum distance	from Mars / km	2.06×10^{8}			
	Wha	at is the ma	aximum intensity of t	he Sun's radiation	at the orbit of	Mars?	[1 mark]	
	Α	492 W n	n ⁻²			0		
	в	718 W n	n ⁻²			0		
	С	6180 W	m ⁻²			0		
	D	9030 W	m ⁻²			0		
1 8	Whie	ch is not a	difficulty in a nuclea	ar fusion reactor?			[1 mark]	
	Α	Confinin	g the plasma.			0		
	в		with highly radioactiv	ve waste.		0		
	С	Heating	the plasma.			0		
	D	Sustaini	ng fusion over a peri	od of time.		0		
19	Whie	ch process	s would cause the int	ternal energy of a	gas to change	by40 J?	[1 mark]	
1 A	A	The gas of work.	is cooled losing 120	J of energy and e	xpands doing 8	30 J 💿	[1,	
	в		is cooled losing 120 as by compressing it		$0~{ m J}$ of work is c			
	С	The gas of work.	is heated gaining 12	20 J of energy and	expands doing	9 80 J 💿		
	D		is heated gaining 12 as by compressing it		80 J of work is	done 🕞		



2 1

2 1	The	mass of an alpha particle is 6.644×10^{-27} kg.		Do not write outside the box
	Wha	t is the binding energy of an alpha particle?	[1 mark]	
	Α	$3.2 \times 10^{-12} J$	0	
	в	$4.3 \times 10^{-12} \mathrm{J}$	0	
	С	$4.7\times10^{-12}\mathrm{J}$	0	
	D	$5.0 imes 10^{-12} \mathrm{J}$	0	
22	Wha	at are the fundamental units of U-value?	[1 mark]	
	A	$kg m s^{-2} K^{-1}$	0	
	в	$kg m s^{-3} K^{-1}$	0	
	с	$kg s^{-2} K^{-1}$	0	
	D	kg s ⁻² K ⁻¹ kg s ⁻³ K ⁻¹	0	
23	is tu verti has The How	Insulated tube of negligible heat capacity contains 100 identical lead per right red upside down so that the pellets fall from the top to the bottom thr cal distance. It is found that after 220 turns of the tube the temperatur increased by 5 °C. experiment is repeated with 400 of these lead pellets in the tube.	rough the same re of the pellets	1
	5 °C	?	[1 mark]	
	A	55	0	
	в	220	0	
	С	440	0	
	D	880	0	



box

[1 mark]

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

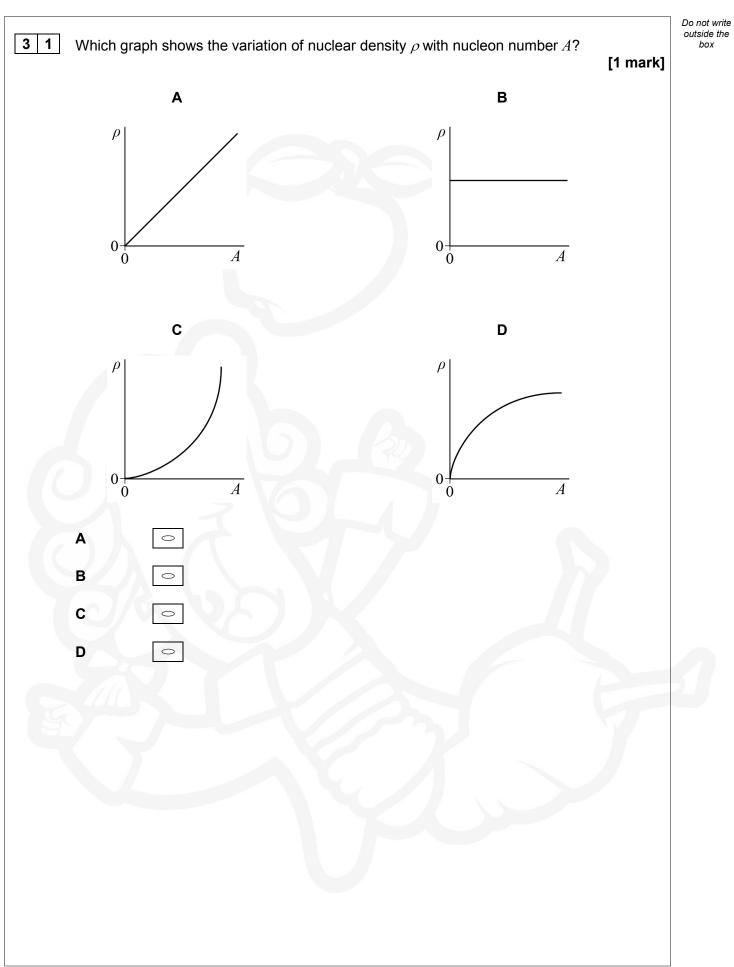
Do not write outside the box

2 9 In a particular design of pumped storage station, water is pumped from a lower reservoir to an upper reservoir, both of fixed volume. The table shows data for two such stations, **X** and **Y**.

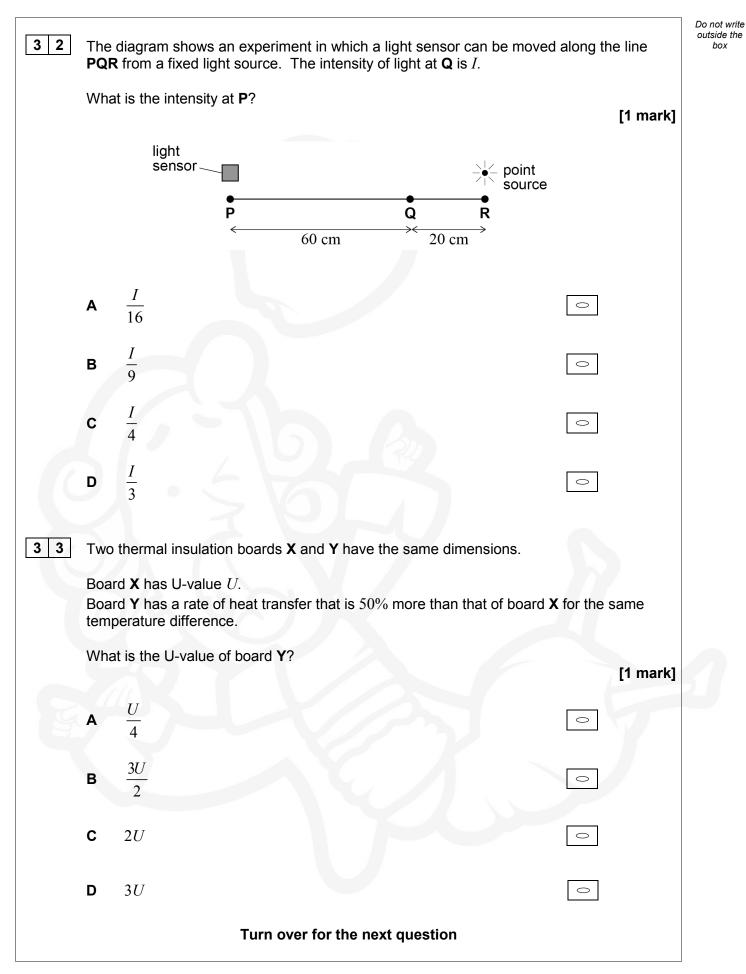
	Station X	Station Y
Volume of lower reservoir	2 <i>V</i>	5 <i>V</i>
Volume of upper reservoir	3 <i>V</i>	4V
Vertical distance between upper and lower reservoir	2 <i>h</i>	h
Maximum energy that can be stored by pumping water from the lower reservoir to the upper	E_{X}	$E_{ m Y}$

What is the ratio $\frac{E_X}{E_Y}$?

 $\frac{2}{5}$


B $\frac{3}{4}$ **C** 1

Α


D 2

3 0	An e 4200 the s	electrical shower has a power of 10.5 kW . Water of specific heat cap 0 J kg ⁻¹ K ⁻¹ passes through the shower at a rate of $9.3 \times 10^{-2} \text{ kg s}^{-1}$. shower at 20 °C and leaves at 45 °C.	acity The water enters	Do not write outside the box
	Som	ne energy is wasted in heating the components of the shower.		
	How	much energy is wasted in one second?		
			[1 mark]	
	Α	0.74 kJ	0	
	В	3.5 kJ	0	
	С	2.7 kJ	0	
	D	9.8 kJ	0	
		Turn over for the next question		

Do not write outside the

box

3 4

A thermal nuclear reactor maintains a steady chain reaction. The average number of neutrons emitted per fission is 3.

Which row shows possible average numbers of neutrons absorbed by control rods and lost from the reactor without causing fission? [1 mark]

	Average number of neutrons absorbed by control rods	Average number of neutrons lost from the reactor without causing fission		
Α	2	1	0	
В	1	0	0	
С	1	1	0	
D	0	1	0	

3 5 The atomic mass unit is:

A 1	the mas	s of a	hydrogen	atom.
------------	---------	--------	----------	-------

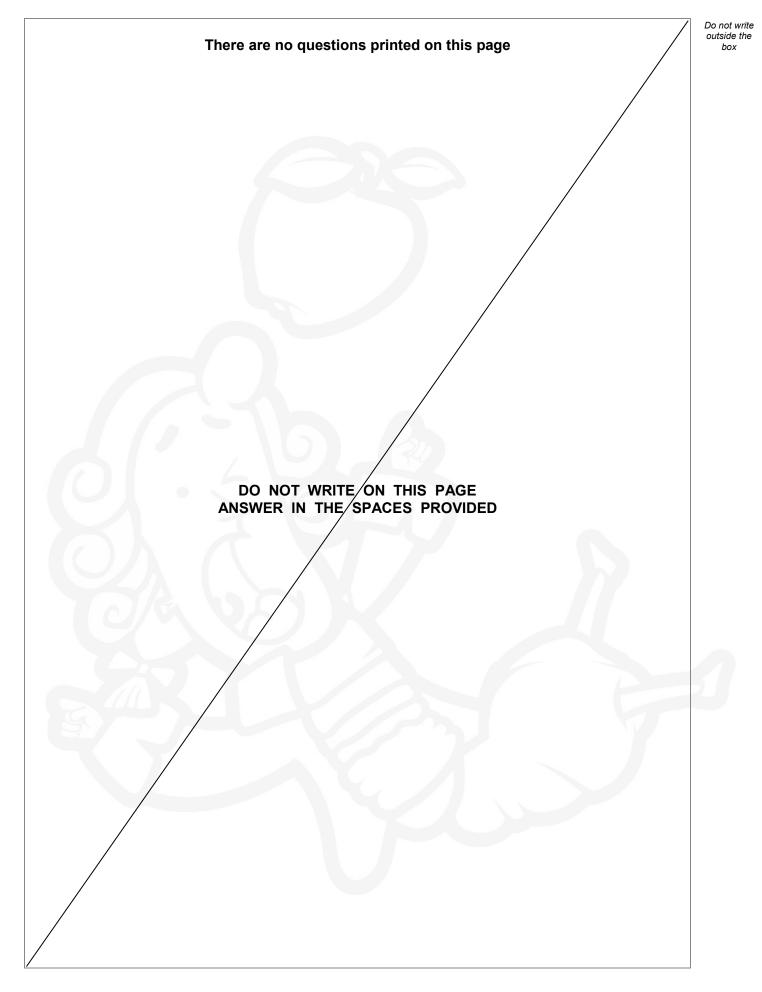
B the average of the mass of a free proton and the mass of a free neutron.

c one-twelfth of the mass of a carbon–12 atom.

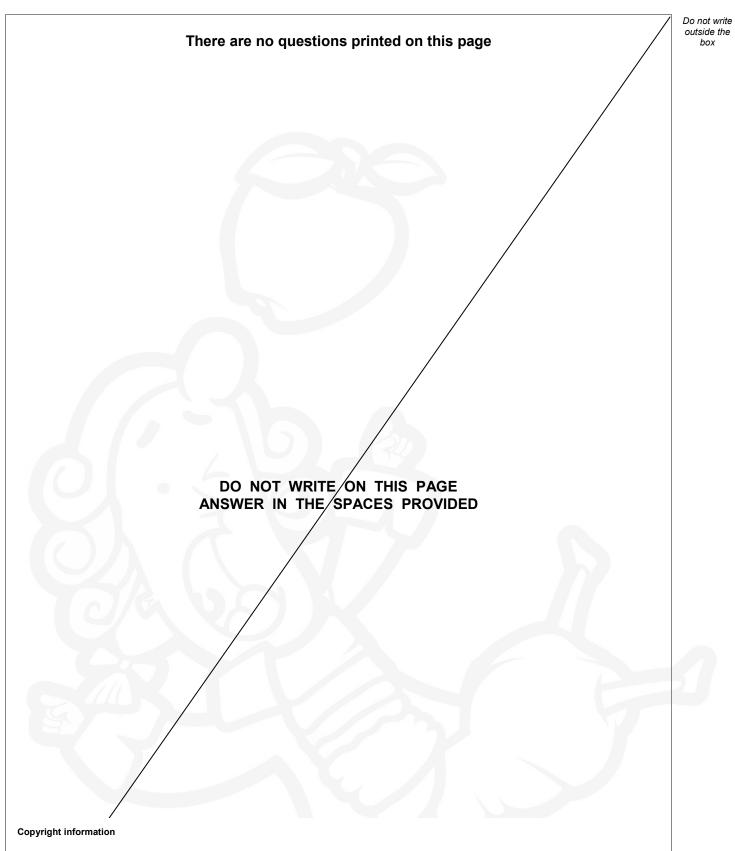
D one-quarter of the mass of an alpha particle.

END OF QUESTIONS

[1 mark]


 \bigcirc

 \bigcirc


0

 \bigcirc

30

For confidentiality purposes, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.oxfordagaexams.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 Oxford International AQA Examinations and its licensors. All rights reserved.

