

F

GCSE (9–1)

Combined Science B (Twenty First Century Science)

J260/03: Physics (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations

Annotation	Meaning
\checkmark	Correct response
X	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

J260/03

G	Question		Answer	Marks	AO element	Guidance
1	(a)		Microwaves have a longer wavelength than light ✓	1	1.1	2 nd box
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3720 (m/s) award 2 marks Substitution: wave speed = $15 \times 248 \checkmark$ wave speed = 3720 (m/s) \checkmark	1	2x2.1	

C	uest	ion	Answer	Marks	AO element	Guidance
2	(a)		Bulb/lamp/light Switch (Battery) Ammeter Voltmeter √√	2	2x1.2	Two marks for 4 correct, one mark for 2 or 3 correct, zero marks for 1 or 0 correct. DO NOT ALLOW Ampmeter
	(b)	(i)	A circuit diagram containing a battery connected in series with an ammeter and a switch, \checkmark AND A bulb with a voltmeter connected in parallel. \checkmark OR	2	2x1.2	DO NOT ALLOW gaps in the circuits IGNORE extra/other components
		(ii)	record the initial brightness of bulb, e.g. bright/dim (and readings from ammeter and voltmeter) \checkmark add second bulb in parallel and record brightness (and readings from ammeter and voltmeter) \checkmark	2	2x1.1	
		(iii)	To have a more valid comparison / To ensure his investigation is repeatable/reproducible/accurate ✓	1	3.1a	ALLOW Fair test
		(iv)	Stay the same ✓ Decrease ✓	2	2x1.1	
	(c)	(i)	Any one from: Overheating components - hot bulb ✓ Heating of wires and bulbs ✓ Blown/exploded/broken bulb ✓	1	3.3a	
		(ii)	Any one from: Use a heatproof mat ✓ Switch off between readings (to ensure components don't get too hot) ✓ Don't exceed maximum supply voltage to lamps ✓	1	3.3a	

C	uestior	Answer	Marks	AO element	Guidance
3	(a)	circular pattern centred on wire ✓ weaker/lines wider spacing away from wire ✓ anticlockwise direction ✓	3	3 x 1.1	All 3 marks can be scored by drawing on diagram if they explicitly show the three marking points DO NOT ALLOW one circle drawn
	(b)	Increase the current in the wire \checkmark Move the pin closer to the wire \checkmark	2	2 x 2.1	2nd and 5th boxes ticked

Q	Question		Answer		AO element	Guidance
4	(a)		Transverse ✓ Longitudinal ✓	2	2 x 1.1	ALLOW examples of transverse and longitudinal for each mark
	(b)		observe that it only moves up and down ✓ stays in the same place / is not pushed along the lake by the waves ✓	2	2 x 1.2	
	(c)	(i)	Any three from: Measurements How to measure time - method of making sound that can be seen (cymbals, large blocks of wood, firework, flare), measure time (with a stopwatch) from when sound made to return of echo OR clap hands in time with echo and count 'n' times. ✓	3	3 x 1.2	ALLOW any method that will work and is suitable
			 How to measure distance e.g. trundle wheel, tape measure. ✓ Accuracy of Measurement MAX one from: A detail of how to measure accurately e.g. Repeat and calculate mean OR use 10 or more echoes (as above) ✓ 			Must imply a suitable distance for sound to travel IGNORE metre rule IGNORE detail of ensuring accuracy of distance between sound source and cliff – whether by measuring one two or many times.
		(ii)	(speed =) <u>distance travelled by sound</u> time taken √	1	1.1	

J	26	0/	03
---	----	----	----

C	Question		Answer	Marks	AO element	Guidance
5	(a)	(i)	$^{14}_{6}$ C \checkmark	1	1.2	last choice ringed
		(ii)	They have different numbers of neutrons ✓	1	1.1	ALLOW they have different mass number DO NOT ALLOW 'more neutrons' or 'less neutrons', because insufficient for different
	(b)		 (charge of nucleus) decreases ✓ (mass of nucleus) decreases ✓ 	2	2 x 1.1	

Question	Answer		AO element	Guidance	
(C)*	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Detailed explanation as to why shellfish are safe to eat but sheep are not by comparing half-life from the table AND Explanation of contamination and irradiation in the context of the shellfish and the sheep. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Partial explanation as to why shellfish are safe to eat but sheep are not AND Explanation of contamination and irradiation There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Basic/limited explanation as to why shellfish are safe to eat but sheep are not AND Description of difference between contamination and irradiation of Compare the table to compare the half-life There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6	1 x 1.1 3 x 3.1b 2 x 3.2a	 AO1.1 Demonstrate knowledge and understanding that contamination is a greater hazard than irradiation because the source continues to radiate the body from inside demonstrates differences between contamination and irradiation AO3.1b Analyse information and ideas to evaluate Both emit gamma radiation Both are made in a reactor Cs 137 has a longer half-life than Co 60 γ rays can harm/mutate cells/DNA γ rays can cause cancer Shellfish is irradiated – has not been contaminated with Co 60 Sheep were contaminated by eating grass containing Cs 137 AO3.2a Analyse information and ideas to make judgements The Cs 137 inside the body continues to emit radiation for a long time. The Co 60 has not touched the shellfish so a person eating it will not be exposed to radiation from Co 60. (If there were) bacteria on the shellfish (they) will have been killed. 	

G	Question		Answer		AO element	Guidance	
6	(a)		the gravitational force on the elephant \checkmark	1	1.1	2 nd box ticked	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 300 000 (J) award 2 marks	2	2 x 2.1		
			Substitution: GPE = weight × height = $60\ 000 \times 5$ \checkmark				
			GPE = 300 000 (J) ✓				
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 40 (%) award 2 marks	2	2 x 2.1		
			Substitution: efficiency = $\frac{300\ 000}{750\ 000} \times 100$ \checkmark			ECF from (b)	
			efficiency = 40 (%) \checkmark				
	(d)		Dissipated as thermal energy OR dissipated as heat OR lost to the surroundings OR lost as heat OR lost as thermal energy ✓	1	1.1	IGNORE lost unless indicated where energy has been transferred to.	

C	Question		Answer		AO element	Guidance	
7	(a)		Magnetic gravitational√	1	3.2a		
	(b)	(i)	450 (kN) ✓	1	2.2		
		(ii)	 (A straight arrow): pointing in opposite direction to existing arrow √ 4.5 squares in length √ 	2	2 x 2.2	ALLOW arrow to start from any point on grid	
	(c)		Any 3 from:	3	1 x 2.1		
			a force from the ground (upwards on him) \checkmark		2 x 1.1	ALLOW (normal) reaction force	
			a force from him downwards on the ground \checkmark				
			the two forces of the same type \checkmark				
			the two forces are equal and in opposite directions \checkmark			DO NOT ALLOW idea that the upward force is the	
			correct idea about Newton's 3 rd law√			interaction pair to his weight	

Q	Question		Answer	Marks	AO element	Guidance
8	(a)		ONE MARK acceleration increases when accelerating force increases ✓ OR there is a positive correlation between acceleration and accelerating force ✓	2	2 x 2.1	
			TWO MARKS acceleration doubles when accelerating force doubles $\checkmark \checkmark$ OR acceleration is proportional to accelerating force $\checkmark \checkmark$			
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3000 (N) award 3 marks	3		
			Recall force = mass x acceleration		1.2	
			Substitution: force = $1200 \times 2.5 \checkmark$		2.1	
			force = 3000 (N) <		2.1	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 81 (km/h) award 4 marks	4		
			Substitution: [final speed – 0] = $2.5 \times 9 \checkmark$		2.1	
			Final speed = (2.5 × 9) = 22.5 (m/s) ✓		2.1	
			(22.5/1000 =) 0.0225km/s ✓		1.2	ALLOW (22.5 x 60 x 60 =) 81 000 (m/h)
			(0.0225 x 60 x 60 =) 81km/h ✓		1.2	ALLOW (81 000/1000 =) 81 (km/h)

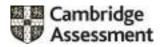
J260/03

C	Question		Answer	Marks	AO element	Guidance
9	(a)		192 (J) ✓	1	2.1	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 21 (hours) award 3 marks			
			convert 240 W to 0.24 kW OR 5.04 kWh to 5040 Wh ✓	1	1.2	ALLOW before or after calculation
			rearrange and substitute: time = $5.04 \div 0.24$ OR $5040 \div 240$ \checkmark	1	2.1	ALLOW 5.04 ÷ 240
			time = 21 (hours) \checkmark	1	2.1	0.021 (hours) i.e. no conversion = 2 marks
	(c)		$1^{st} box = reactor$ $2^{nd} box = turbine$ $3^{rd} box = generator \checkmark \checkmark$	2	2x1.1	three correct = 2 marks two correct = 1 mark zero or one correct = 0 marks

Q	Question		Answer	Marks	AO element	Guidance
10	(a)		transferred to (thermal store of) surroundings ✓ Energy is conserved OR total energy stays the same ✓	2	2x2.1	ALLOW Energy cannot be created or destroyed
	(b)	(i)	density = <u>mass</u> ✓ volume	1	1.1	centre equation ringed
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.73 (g/cm ³) and to 2sf award 3 marks			
			Substitution: density = $66 \div 90 \checkmark$	1	2.1	
			density = 0.7333 (g/cm³) √	1	2.1	ALLOW value given to 2 or more sf
			density = 0.73 (g/cm ³) \checkmark to 2sf	1	1.2	ALLOW ECF incorrect value given to 2sf gets this mark.
	(c)		Jane ✓ (It is the increase in internal energy that increases the temperature of 1kg of a material by 1°C.)	1	3.1a	ALLOW answer on the diagram e.g. ringed or ticked
	(d)		$0.4 \times 2740 \times (20 - 4) \checkmark$	1	2.1	3rd answer ticked
	(e)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 81 600 (J) award 3 marks			
			select and apply: energy to cause a change of state = mass × SLH	1	2.1	ALLOW 0.4 x 204 000
			$E = 0.4 \text{ kg} \times 204 \text{ kJ} \checkmark$	1	2.1	
			= 81.6 kJ = 81 600 (J) \checkmark	1	1.2	

Q	Question		Answer	Marks	AO element	Guidance
11	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4.5×10^5 (J) in standard form award 4 marks			
			Recall Work done (energy transferred) = force × distance \checkmark	1	1.1	ALLOW GPE=weight×height ALLOW GPE=mass×g×height OR mgh
			= 9000 N × 50 m ✓	1	2.1	
			= 450 000 (J) ✓	1	2.1	
			= 4.5 x 10 ⁵ (J) ✓	1	1.2	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 30000 (W) award 3 marks			ECF from (a)(i)
			Recall Power = Energy transferred \div time \checkmark	1	1.1	
			= 450 000 J ÷ 15 s ✓	1	2.1	
			= 30000 (W) ✓	1	2.1	ALLOW 30 <u>kW</u>
	(b)		Rate Mechanically	1	1.1	Four correct = 2 marks Three or Two correct = 1 mark
			Kinetic Thermal ✓ ✓	1	2.1	One or none correct = 0 marks

Q	Question		Answer	Marks	AO element	Guidance
12	(a)	(i)	Both points plotted to within ±0.5 small square \checkmark	1	2.2	Points are: (1.4, 8) and (1.8, 11)
		(ii)	Suitable straight line of best fit through most of the points \checkmark	1	2.2	ALLOW points as plotted by candidate
		(iii)	Current is (directly) proportional to potential difference/pd/voltage OR the relationship is linear ✓	1	3.1a	ALLOW component is linear IGNORE just they both increase / as one increases so does the other
		(iv)	(fixed) resistor √	1	2.1	ALLOW resistance (wire) or Ohmic conductor
		(v)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 160 OR 170 (Ω) award 4 marks			
			Read current = 12 mA from graph \checkmark	1	2.2	ALLOW current = 11.8 – 12.2 mA ECF from line drawn on graph
			Convert mA to A: Resistance = $12 \text{ mA} = 12 \times 10^{-3} \text{ A} \checkmark$ Rearrange equation and substitute:	1	1.2	
			Resistance = 2.0 V ÷ 12 × 10 ⁻³ A \checkmark	1	2.1	ALLOW 3 marks for correct calculation with no conversion = 0.16 or 0.17 (Ω)
			= 160 or 170 (Ω) ✓	1	2.1	ALLOW 2 marks for substitution with an incorrect or no conversion and incorrect or no evaluation, e.g. for Resistance = $2.0 \div 12$ ALLOW answers of more than 2 s.f. that round to 160 or 170
	(b)	(i)	Current is not (directly) proportional to potential difference/pd/voltage	1	3.1a	ALLOW component is non-linear
			OR the relationship is non-linear ✓			 ALLOW description of what the graph shows e.g.: No current when p.d. negative AND then current increases as p.d. increases OR No current when potential difference less than 0.5 V AND then current increases as p.d. increases
		(ii)	To allow current to pass in only one direction \checkmark	1	3.2b	ALLOW convert a.c. to d.c.


OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

