GCSE (9-1)

Combined Science A (Gateway Science)

J250/05: Paper 5 (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
A	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions. AO3.3 AO3.3a Analyse information and ideas to develop and improve experimental procedures. Analyse information and ideas to develop experimental procedures.

For answers to section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question	Answer	Marks	AO element	Guidance
1	C	1	1.1	
2	C	1	2.1	
3	D	1	1.2	
4	C	1	2.1	
5	B	1	1.1	
6	A	1	1.2	
7	A	1	2.1	
8	B	1	2.1	
9	B	1	1.1	
10	B	1	1.1	

Question		Answer	Marks	AO element	Guidance
$\mathbf{1 1}$		Faster \checkmark Collide \checkmark Pressure \checkmark	3	3×2.1	

	(iii)	$(31+31.2)=31.1(\mathrm{~s}) \checkmark$	1	1.2	IGNORE inclusion of try 3 (10.1) when calculating mean
	(iv)	Any one from: Discard anomaly / repeat time $3 \checkmark$ Repeat the time measurements (until they are similar so results are repeatable) Use light gates / video camera Make sure stopwatch zeroed \checkmark	1	3.3b	ALLOW idea of another person taking measurements / do more sets of readings/times ALLOW idea of controlled conditions e.g. weather conditions
(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 5 (m / s) award 3 marks Rearrange equation: $(s=) d / t \checkmark$ $\begin{aligned} & (\mathrm{s}=) 200 / 40 \checkmark \\ & (\mathrm{~s}=) 5(\mathrm{~m} / \mathrm{s}) \downarrow \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2 \times 2.1 \end{gathered}$	ALLOW words or symbols $\mathrm{v}=\mathrm{s} / \mathrm{t}$

Question			Answer	Marks	AO element	Guidance
13	(a)		A \checkmark	1	2.1	DO NOT ALLOW more than one box ticked
(b)			$42\left({ }^{\circ} \mathrm{C}\right)^{\checkmark}$	1	2.2	
(c)			$B \checkmark$	1	2.1	DO NOT ALLOW more than one box ticked
-	(d)		Break \checkmark Stays the same \checkmark Stays the same \checkmark Stays the same \checkmark	4	4×2.1	
	(e)	(i)	$(20 \div 1000)=0.02(\mathrm{~kg})^{\checkmark}$	1	1.2	
		(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 897 (J) award 2 marks Selection of (no mark): Thermal energy for a change in state $=$ Mass \times specific latent heat capacity $\begin{aligned} & (\mathrm{E}=) 0.01 \times 89700 \checkmark \\ & (\mathrm{E}=) 897(\mathrm{~J}) \checkmark \end{aligned}$	2	2×2.1	

Question		Answer	Marks	AO element	Guidance	
$\mathbf{1 4}$	(a)		Using friction / rubbing (with a duster or cloth) / AW \checkmark	$\mathbf{1}$	$\mathbf{1 . 2}$	IGNORE any explanation e.g. mention of positive electrons / protons moving
(b)	Electrons / negative charges move \checkmark	$\mathbf{2}$	$\mathbf{1 . 1}$	ALLOW clear indication on the diagram that the minus signs leave the rod for two marks		
(Electrons move) from the rod \checkmark	$\mathbf{2 . 2}$	ALLOW electrons are lost (from the rod) $\checkmark \checkmark$ DO NOT ALLOW any marks for an indication that protons/positive signs/positive electrons move or disappear				
(c)	Opposite charges attract \checkmark	$\mathbf{2}$	$\mathbf{2 \times 1 . 2}$	ALLOW positive (charges) and negative (charges) attract / + and - attract ALLOW negative signs indicated on left rod		

Question Answer		AO element	Marks		
15	(a)	$A_{1}=1(.0)(A) \checkmark$ $A_{3}=0.5(A) \checkmark$	$\mathbf{2}$	$\mathbf{2 \times 2 . 2}$	ALLOW 1000 (A) and 500 (A) for one mark maximum (incorrect conversion of mA to A)
(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=10(C)$ award 2 marks $(Q=) 0.5 \times 20 \checkmark$ $(Q=) 10(C) \checkmark$	$\mathbf{2}$	$\mathbf{2 \times 2 . 1}$		

Question			Answer	Marks	AO element	Guidance
16	*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of elastic and plastic deformation. AND Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of Hooke's Law. AND Describes how the graphs show different stiffness of \mathbf{A} and B. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of elastic and plastic deformation. AND Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of Hooke's Law. OR Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of elastic and plastic deformation. AND Describes how the graphs show different stiffness of \mathbf{A} and B. OR	6	$\begin{gathered} 4 \times 1.2 \\ 2 \times 3.2 b \end{gathered}$	AO3.2b Analyses information and ideas to draw conclusions about properties of each spring - A is stiffer / higher spring constant / doesn't extend/stretch as much (for the same force) - as more force needed for same extension - B is more flexible / less stiff / lower spring constant / extends/stretches more (for the same force) - as less force needed for same extension AO1.2 Demonstrates knowledge of linear and non-linear relationships between force and extension. - As force increases, extension increases - Linear relationship (between F and x) for \mathbf{A} - F proportional to x for \mathbf{A} - F proportional to x for \mathbf{B} at the start / up to elastic limit / up to limit of proportionality - Non-linear relationship for B - A obeys Hooke's law - B obeys Hooke's law at the start / up to elastic limit / limit of proportionality - B doesn't obey Hooke's law at the end / after the elastic limit / after limit of proportionality AO1.2 Demonstrates knowledge of elastic and plastic deformation - A shows elastic behaviour - A has the same shape / not overstretched (when force removed) - B shows plastic behaviour - B has a different shape / overstretched (when force is removed)

Question		Answer	Marks	AO element	Guidance
	Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of Hooke's Law. AND Describes how the graphs show different stiffness of \mathbf{A} and \mathbf{B}. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of elastic and plastic deformation. OR Describes the properties of \mathbf{A} and \mathbf{B} using knowledge of Hooke's Law. OR Describes how the graphs show different stiffness of \mathbf{A} and \mathbf{B}. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. $\mathbf{0}$ marks No response or no response worthy of credit.				

Question		Answer	Marks	AO element	Guidance
17	(a)	Any two from: Strength of field Magnitude of force \checkmark Direction of field or force \checkmark Position of poles \checkmark	2	2×1.1	ALLOW strongest close to magnet/poles / ORA IGNORE just north is strongest / just south is strongest ALLOW stronger forces where the field lines are closer / ORA ALLOW (field or force goes) north to south / (field or force) into south / (field or force) out of north / (field or force) starts from north ALLOW north at one end and south at other end / where (the position) of north and south are IGNORE references to opposites attract / same poles repel
	(b)	(idea that when tested using a permanent magnet) Permanent magnet as there is repulsion because like poles repel Copper as no attraction (or repulsion) because it is not magnetic Iron as attraction (only) because iron is magnetic \checkmark	3	$3 \times 3.3 \mathrm{a}$	If no mark awarded ALLOW max 1 mark for correct description without explanations for all three blocks ALLOW copper as no attraction (or repulsion) because it is not affected by magnets Ignore induction / stick (for attract)

(c)	(i)	As distance increases, dip angle decreases / ORA \checkmark As the distance increases, dip angle decreases at an increasing rate / ORA \checkmark	2	$2 \times 3.1 \mathrm{a}$	ALLOW inverse relationship IGNORE negative correlation ALLOW not linear / not proportional / change is more gradual / slower near pole / ORA ALLOW comparison of two data points For 1 mark only ALLOW inversely proportional
	(ii)	$72\left({ }^{\circ}\right)^{\checkmark}$	1	2.2	ALLOW $72\left(^{\circ}\right.$) + or - 2
	(iii)	Any one from: Not accurate AND value not (close enough to) $66^{\circ} \checkmark$ Accurate AND value close to $66^{\circ} \checkmark$	1	3.2a	ALLOW ecf from cii ALLOW description in form of a calculation e.g. $72-3=69 \text { not } 66$ ALLOW Not accurate AND because it is too different/more than 3° different ALLOW Accurate AND only slightly different/less than 3° different
	(iv)	Earth's core is magnetic / the direction of Earth's magnetic field / the Earth has a magnetic field AW \checkmark	1	3.2b	ALLOW Earth has a magnetic force / has magnetic poles / Earth is magnetic
(d)		Any two from: Both students or both statements are incorrect \checkmark (As distance doubles,) field strength halves or is multiplied by 0.5 / ORA \checkmark Use of values from graph showing inversely proportional relationship or showing field strength is not multiplied by 0.25 or $0.75 \checkmark$	2	2×3.16	ALLOW inversely proportional ALLOW use of any 2 suitable values to show inversely proportional relationship or that field strength is not multiplied by 0.25 or 0.75 , e.g. $(0.01,4)$ to $(0.02,2)$ or $(0.02,2)$ to $(0.04,1)$ etc.

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

