

GCE

Physics A

H156/02: Depth in physics

Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.
- **M** marks These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Guidance.

Annotations available in RM Assessor

Annotation		Meaning					
V	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).					
×	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.					
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.					
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.					
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.					
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.					
ECF	Error carried forward	Used in <u>numerical answers only</u> , unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.					
L1	Level 1	L1 is used to show 2 marks awarded and L1 [^] is used to show 1 mark awarded.					
L2	Level 2	L2 is used to show 4 marks awarded and L2 [^] is used to show 3 marks awarded.					
L3	Level 3	L3 is used to show 6 marks awarded and L3 [^] is used to show 5 marks awarded.					
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.					
SEEN	Seen	To indicate working/text has been seen by the examiner.					
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.					
TE	Transcription error	error This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formula booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.					
ХР	Wrong physics or equation	Used in <u>numerical answers only</u> , unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.					
۸	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).					

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
ignore	Statements which are irrelevant
allow	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Q	uesti	ion	Answer		Guidance	
1	(a)	(i)	$\frac{\Delta v}{\Delta t} \operatorname{and} \Delta t \ge 0.20 \text{ s}$	M1	Allow tolerance of $\pm \frac{1}{2}$ a small square e.g. $\frac{4.7(-0)}{0.48(-0)} = 9.79$	
			9.8 m s ⁻²	A0		
		(ii)	4.7 or $\frac{1}{2} \times 0.057 \times v^2$	M1		
			$\frac{1}{2} \times 0.057 \times 4.7^2 = 0.629565$	M1		
			0.63 J	A0		
	(b)	(i)	0.8 x 0.63 J (0.504 J) OR $v^2 = \frac{2 \times \text{KE}}{0.057}$	C1	Allow one mark for correct rearrangement of KE equation with incorrect KE	
			$v^2 = \frac{2 \times 0.504}{0.057}$	C1	17.684	
			4.2(1) (ms ⁻¹)	A1		
		(ii)	Straight line from (0.48, -4.2) to x-axis <u>and</u> plotted to $\pm\frac{1}{2}$ small square	C1	Allow ECF from (b)(i) Allow (0.49, -4.2) / (0.50, -4.2) / (0.51, -4.2) / (0.52, -4.2)	
			<i>x</i> -axis intercept at $t = 0.91 \pm 0.03$ (s) from negative v	A1	Allow ECF for incorrect negative v	
		(iii)	area under the graph = $\frac{1}{2} \times 4.2 \times 0.43$	C1	Allow ECF from (b)(i) and (b)(ii) Allow use of equation of motion: e.g. $s = \frac{4.2^2}{2 \times 9.81}$ or $s = (-4.2 \times 0.43) + \frac{1}{2} \times 9.81 \times 0.43^2$ (numbers must be seen) Allow use of loss of KE = gain in PE	
			0.90 (m)	A1	Allow one significant figure Note 0.84 for $\Delta t = 0.40$ to 0.97 for $\Delta t = 0.46$	
	(c)		Line will curve / be non-linear OR (magnitude of) gradient of line decreases (with increase in time)	B1	Allow sketch or gradient decreases / changes Not gradient is smaller / less steep / shallower / lower	
			(Line will end with) a lower maximum/final velocity or hit the ground after a longer time	B1	Allow ball will have a lower maximum/final velocity or hit the ground after a longer time	
			Total	12		

PMT AKBAR MACADEMY www.akbaracademy.co.uk June 2019

H156/02

Question	Answer		Guidance
2 (a)	 Level 3 (5–6 marks) Clear correct explanation of terms and correct comparison of materials There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear correct explanation of terms or correct comparison of materials or has some clear correct explanation of terms and some correct comparison of materials There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Has limited correct explanation of terms and limited correct comparison of materials There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	B1 x 6	 Indicative scientific points may include: Explanation of terms elastic : material returns to original length (when load removed) plastic: material permanently deformed (when load removed) brittle: elastic behaviour (only) up to breaking point/ will not deform before breaking ductile: elastic and plastic regions before the material breaks / able to be (permanently) deformed / stretched / bent without breaking UTS: maximum (tensile) stress a material can withstand Young modulus = stress /strain Young modulus = gradient of stress-strain graph Comparison of materials Both have elastic regions K is elastic J has a plastic region, K does not have a plastic region J is ductile K is brittle gradient of J is greater than K Young modulus of J is greater than K UTS of J is greater than K
(b)	(Mass of adult =) 50 kg to 150 kg or W = 500N to 1500 N Area = $\frac{\text{weight}}{2.3 \times 10^n}$ Area = $\frac{1}{3} \times \frac{\text{weight}}{2.3 \times 10^6}$ = value for area (m ²) Total	B1 C1 <u>A1</u> 9	 Allow use of 10 for g (since estimate) Allow ECF for incorrect weight Ignore POT Allow one significant figure

Question		Answer		Guidance	
(a		(Vernier) Calliper or micrometer (screw gauge)	B1	Not rule(r)	
	(ii)	2.52	B1		
		± 0.08	B1	Allow (2.52-2.43 =) 0.09 or (2.59-2.52 =) 0.07	
	(iii)	Volume = $\frac{4}{3} \times \pi \times (1.26 \times 10^{-2})^3 = 8.379 \times 10^{-6}$	M1	$\frac{1}{6} \times \pi \times (2.52 \times 10^{-2})^3 \text{ OR } \frac{4}{3} \times \pi \times \left(\frac{2.52 \times 10^{-2}}{2}\right)^3$	
		$8.4 \times 10^{-6} \text{ m}^2$	A0		
	(iv)	$\frac{0.023}{8.4 \times 10^{-6}}$ or 2738	C1	Note 2745 if using calculator value from (a)(iii)	
		2700 (kg m ⁻³) or 2.7×10^3 (kg m ⁻³)	A1	Note must be two significant figures Allow one mark for 2.7×10^6 (kg m ⁻³)	
	(v)	$\frac{1}{23}$ or $\frac{0.08}{2.52}$ or $\frac{0.24}{2.52}$ or 4.3% or 3.2% or 9.5%	C1	Allow ECF from $a(ii) - 3.6\%$ or 10.7% for $\Delta d = 0.09$ Allow maximum/minimum methods	
		14% (13.8%)	A1	Note 13% for Δd = 0.07 or 15% for Δd = 0.09 [ECF 5.5% for Δd = 0.01]	
(b)	Extension = 0.096 – 0.078 or 0.018 m	C1		
		Weight = 0.023 × 9.81 or 0.22563	C1	Allow ECF for incorrect mass conversion from (a)(iv)	
		13 (N m ⁻¹)	A1	Allow 12.6 (N m ⁻¹) or 12.5 (N m ⁻¹)	
(C) (i)	Apparent weight = 0.01×13 (= 0.13 N)	C1	Allow ECF from (b) Allow 0.008 ×12.5	
		(Upthrust = 0.226 - 0.13) = 0.10 (N)	A1	Allow 0.1 (N) (1sf)	
	(ii)	$\rho = \frac{0.10}{9.81 \times 8.4 \times 10^{-6}}$	C1	Allow ECF from (c)(i)	
		1200 (kg m ⁻³)	A1		
		Total	15		

Q	uestic	on	Answer	Marks	Guidance	
4	(a)	(i)	$\frac{1}{R} = \frac{1}{60} + \frac{1}{60} \text{ or } \frac{1}{R} = \frac{1}{60} + \frac{1}{60} + \frac{1}{60} \text{ or } R = \frac{60}{n} \text{ or } R = \frac{60 \times 60}{60 + 60}$	M1		
			$30 \ \Omega + 20 \ \Omega = 50 \ \Omega$	A1		
		(ii)	$\frac{30}{50} \times 9 \text{ or } I = \frac{9}{50} = 0.18 \text{ A}$	C1		
			5.4 V	A1		
		(iii)	$\left(I = \frac{5.4}{60}\right) = 0.090 \text{ A}$	C1	Allow ECF from (a)(ii)	
			(0.09 × 120 =) 11	A1	Allow 10.8	
			C or coulomb	B1	Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit)	
		(iv)	$(11 \times 5.4 \text{ or } 0.09 \times 5.4 \times 120)$ = 59 or 58 (J)	A1	Note 58(.3) if 10.8 C used Allow ECF from (a)(ii) and/or (a)(iii) Not 60	
	(b)		$I = nAve \text{ or } v \alpha I$	B1	Allow any correct rearrangement of <i>I</i> = <i>nAve</i>	
			larger current through Y than Z ORA	B1	Allow $I_{\rm Y} = 0.090$ A and $I_{\rm Z} = 0.060$ A OR $I_{\rm Y} / I_{\rm Z} = 1.5$ ORA	
			drift velocity in Y is 1.5 times drift velocity in Z ORA	B1		
	(c)		<i>n</i> = number of (free) charge carriers <u>per unit</u> volume / <u>per</u> cubic metre / m^{-3}	B1	Allow free electrons for free charge carriers Not electrons	
			The larger the value of <i>n</i> , the better the conduction / greater the current ORA	B1	Allow copper is a conductor / most conductive or semiconductor does not conduct as well as copper etc.	
			Copper has a larger <i>n</i> than carbon which has a larger <i>n</i> than ceramic ORA	B1	Allow values for <i>n</i>	
			Total	14		

(Question		Answer		Guidance
5	(a)	(i)	0.45 (m)	B1	
		(ii)	4.0 (m)	B1	Ignore significant figures
		(iii)	$\frac{0.5}{4}$ or $\frac{1}{8}$	C1	Allow ECF from (a)(ii)
			$\left(\frac{0.5}{4} \times 2\pi\right) \approx 2\pi = \frac{\pi}{4}$ or 0.79 (rad)	A1	Note 0.785
		(iv)	0.45 ² or 0.15 ² or 0.2025 or 0.0225	C1	Allow ECF from (a)(i)
			9	A1	Allow one significant figure
	(b)		Level 3 (5–6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Limited procedure, limited measurements and limited analysis There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	B1 x 6	Indicative scientific points may include:ProcedureIabelled diagramtwo loudspeakers OR loudspeaker and double slitsignal generator connected to loudspeaker(s)microphone and oscilloscope/sound sensormicrophone and oscilloscope/sound sensor moved between loudspeakerssafety precaution (ear defenders)method to avoid reflections of soundchange frequency and repeat measurements for x $D >> a$ Measurementsfrequency determined from oscilloscope e.g. time- base to determine period and $f = 1/T$ use of rule(r) to measure distances a, D and x measures over several maxima/minimaAnalysisrearrangement of equation for v or into $y=mx$ plot a graph of x against $1/f$ or equivalentstraight line through origin confirms relationshipgradient = vD / a $v = \frac{a \times gradient}{D}$
			Total	12	• $v = \frac{u \times gradient}{D}$.

(Quest	tion	Answer		Guidance	
6	(a)	(i)	Threshold frequency is the <u>minimum</u> frequency (of the incident EM waves/photon) to detach / emit / remove / release an electron (from the surface of the silver)	B1	Allow electrons Allow photoelectron / photoelectrons	
		(ii)	$1.1(0) \times 10^{15} (Hz)$	B1		
		(iii)	$6.63 \times 10^{-34} \times 1.1 \times 10^{15}$ or 7.293×10^{-19}	C1	Allow substitution of point from graph into Einstein's equation Allow use of gradient as the Planck constant	
			4.6 (eV)	A1	Note 4.558 eV	
	(b)		 Any <u>four</u> from: electrons may be diffracted by graphite/carbon/atoms/crystal lattice to produce rings / circular interference fringes diffraction of electrons occurs when the wavelength is comparable / similar to the gap size changes in the electron's speed/energy change the size of the ring / interference fringe spacing electrons have a (de Broglie) wavelength given by <i>λ=h/p</i> reason for the rings as opposed to linear pattern, e.g. graphite atoms are irregularly arranged. 	B1x 4		
			Total	8		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019