OXFORD

INTERNATIONAL

AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

INTERNATIONAL GCSE PHYSICS

Paper 2

Monday 16 November 2020 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a protractor
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

- In all calculations, show clearly how you worked out your answer.

Information

- The maximum mark for this paper is 90 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

Answer all questions in the spaces provided.

| 0 | 1 |
| :--- | :--- |\quad The Sun is a main sequence star.

| 0 | 1 | 1 |
| :--- | :--- | :--- | Which gas is the most common gas found in the Sun?

Tick (\checkmark) one box.

Carbon dioxide \square
Hydrogen

Nitrogen

Oxygen

| 0 | 1 | 2 |
| :--- | :--- | :--- | Which part of the Sun has the greatest temperature?

Tick (\checkmark) one box.

The core \square

The outer layers \square

The surface

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Energy is released in the Sun when small nuclei join together. |
| :--- | :--- | :--- | :--- |

What is the name of this process?
Tick (\checkmark) one box.

Nuclear decay \square

Nuclear fission

Nuclear fusion

0	1	4
4		

Give one way in which the energy is transferred from the Sun to the Earth.

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ Complete the diagram to show how the Sun will change after it leaves the |
| :--- | :--- | :--- | :--- | main sequence.

Choose answers from the box.
black blue orange red white yellow

0	$\mathbf{1}$	6	Stars much more massive than the Sun end their cycle with a large explosion.

What is the name of this explosion?
Tick (\checkmark) one box.

Black hole

Nebula

Neutron star

Supernova

| 0 | 2 |
| :--- | :--- | Cobalt-60 is a radioactive isotope.

An atom of cobalt- 60 can be represented by the symbol ${ }_{28}^{60} \mathrm{Co}$.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$ How many protons does a nucleus of cobalt-60 have?

Number of protons \qquad

0	2	2

Charge \qquad

| $\mathbf{0}$ | $\mathbf{2}$. 3 How many neutrons does a nucleus of cobalt- 60 have? |
| :--- | :--- | :--- |

Number of neutrons \qquad

0	2	4

Charge \qquad

Cobalt-60 emits beta radiation.

| 0 | 2 | 5 |
| :--- | :--- | :--- | What is beta radiation?

Tick (\checkmark) one box.

A fast moving particle consisting of two protons and two neutrons.

A high energy electron ejected from the nucleus.

A high frequency electromagnetic wave. \square

Why is a new element formed?
Tick (\checkmark) one box.

The number of electrons in the atom changes.

The number of neutrons in the atom changes.

The number of protons in the atom changes. \square

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{7}$ Which row gives the ionising power and range in air of beta radiation?

Tick (\checkmark) one box.

lonising power	Range in air
Low	$\sim 1.0 \mathrm{~cm}$
Medium	$\sim 1.0 \mathrm{~m}$
High	Infinite

$\mathbf{0}$	$\mathbf{3} \quad$ Figure 1 shows a stationary basketball.

Figure 1

| 0 | 3 | 1 |
| :--- | :--- | :--- | The ball has a mass of 0.60 kg .

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the ball.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
Weight $=$ \qquad N

| 0 | 3 | 2 |
| :--- | :--- | :--- | The ball exerts a normal contact force on the ground. This force is equal to the weight of the ball.

What is the size of the force that the ground exerts on the ball?
Tick (\checkmark) one box.

Less than the weight of the ball \square

The same as the weight of the ball \square
Greater than the weight of the ball \square

The size of the force is zero

Question 3 continues on the next page

Figure 2 shows some students playing a game of basketball.
During the game, players bounce the ball off the ground.

Figure 2

One of the students in Figure $\mathbf{2}$ is exerting a downward force on the ball.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ The resultant force on the ball is 18 N downwards. |
| :--- | :--- | :--- | :--- |

mass of ball $=0.60 \mathrm{~kg}$

Calculate the acceleration of the ball.
Use the Physics Equations Sheet.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

0	3	4

What is the effect of increasing the downward resultant force on the ball?
Tick (\checkmark) one box.

Decreases the height the ball bounces to.

Decreases the time it takes for the ball to bounce back to the student's hand. \square

Decreases the velocity the ball has when it hits the floor.

0	3	5

\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{4} \quad$ Figure $\mathbf{3}$ shows a drink made from crushed ice..$~$ |
| :--- | :--- | :--- |

The drink is at a temperature of $0^{\circ} \mathrm{C}$.
A student investigated how the temperature of the drink changed with time.
Figure 3

$\begin{array}{lll}0 & 4 & 1\end{array}$ The drink had a starting temperature of $0^{\circ} \mathrm{C}$.
The crushed ice has a melting point of $0{ }^{\circ} \mathrm{C}$.
All of the ice had melted after 10 minutes.
The drink reached the room temperature of $25^{\circ} \mathrm{C}$ after a further 10 minutes.
Complete Figure 4 to show how the temperature of the drink changed in 25 minutes.

Figure 4

| $\mathbf{0}$ | $\mathbf{4} .2$ | $\mathbf{2}$ Describe how the student could have taken accurate measurements of temperature |
| :--- | :--- | :--- | and time for this investigation.

Temperature
\qquad
\qquad
\qquad
Time \qquad
\qquad
\qquad
\qquad

0	$\mathbf{4}$	$\mathbf{3}$	It took 132000 J of energy to melt all of the ice.

The mass of ice melted was 0.40 kg .

Calculate the specific latent heat of fusion of ice.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Specific latent heat of fusion = \qquad J / kg

Question 4 continues on the next page

0	4	4
4		

Arrangement
\qquad
\qquad
\qquad
\qquad
\qquad
Movement \qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} \quad$ Figure 5 shows a lightning strike. Lightning is caused by a discharge of |
| :--- | :--- | static electricity from a cloud to the ground.

Figure 5

The lightning strike lasts for $4.0 \times 10^{-6} \mathrm{~s}$.

Calculate the charge transferred during the lightning strike.
Use the Physics Equations Sheet.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
Charge transferred = \qquad Unit \qquad

| 0 | 5 | 2 |
| :--- | :--- | :--- | is $5.0 \times 10^{6} \mathrm{~V}$.

Determine the energy transferred by the lightning strike.
Use the Physics Equations Sheet.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred (standard form) = \qquad J

0	5	3	Scientists use detectors to monitor lightning strikes.

The distance to a lightning strike can be calculated using the following measurements.

- The time between the flash of light and the noise caused by the strike.
- The speed of light.
- The speed of sound.

Explain how these measurements can be used to determine the distance to the lightning strike.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6}$ A student investigated the energy released when different liquid fuels are burned. .0 . 10 |
| :--- | :--- | :--- |

Figure 6 shows some of the equipment used.

Figure 6

This is the method used.
1 Pour different liquid fuels into identical fuel burners.
2 Pour water into a beaker.
3 Measure the starting temperature of the water.
4 Light the fuel burner.
5 Measure the final temperature of the water.
6 Repeat steps 2 to 5 for different liquid fuels.

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ The starting temperature of the water was the same for each fuel.

Explain how two other variables should be controlled.

1
\qquad
\qquad
\qquad

2 \qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ When the fuel is burned, not all of the energy released is transferred to the water.

What happens to the energy that is not transferred to the water?
\qquad
\qquad

0	6	3	Different renewable fuels can be used in motor vehicles.

The amount of energy released per kg of fuel can be measured.
The amount of CO_{2} released per kg of fuel can be measured.

Table 1 gives the results for two different fuels.

Table 1

Fuel	Energy released $\mathbf{i n} \mathbf{k W} \mathbf{~}$	$\mathbf{C O}_{\mathbf{2}}$ released $\mathbf{i n} \mathbf{~ k g}$
Methanol	8.3	1.91
Ethanol	5.5	1.37

The amount of CO_{2} per kWh is used to compare how polluting the fuels are.
Determine which fuel would be the least polluting.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

0	6	.4	Public transport systems are being developed to reduce pollution.

Figure 7 shows a tram.

Figure 7

Trams can be powered by an electric motor or by an engine that burns hydrogen.
Hydrogen produces only water when it is burned.

Explain why the hydrogen tram is less polluting to use than the electric tram.

0	7	Figure 8 shows a cannon.

An explosion inside the cannon causes a heavy ball called a cannonball to be fired forwards. The cannon moves backwards.

Figure 8

The cannonball and the cannon are initially stationary.
An average force of 4.0 kN acts on the cannonball for 0.50 s .
The cannonball leaves the cannon with a velocity of $80 \mathrm{~m} / \mathrm{s}$.

0	$\mathbf{7}$	$\mathbf{1}$ Calculate the mass of the cannonball.

Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass =
kg
 mass of cannon $=1600 \mathrm{~kg}$

Determine the initial velocity of the cannon as the cannonball leaves the cannon. Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Initial velocity of cannon = \qquad m / s

0	7	3	The larger cannon moves a short distance before it stops moving.

Explain why the cannon stops moving.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$. $\mathbf{2}$ Determine the potential difference across the cell in Figure 9. |
| :--- | :--- | :--- |

Give your answer to 2 significant figures.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Potential difference (2 significant figures) $=$ V

| 0 | $\mathbf{8} .3$ | Figure 10 shows two resistors and identical cells connected as a series circuit and |
| :--- | :--- | :--- | connected as a parallel circuit.

Figure 10

Compare the potential differences and currents in the series circuit with the potential differences and currents in the parallel circuit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

0	9	Figure 11 shows part of a ray diagram for light travelling from air into glass

Figure 11

0	9	1	Complete Figure 11 to show the path of the ray as it enters the glass.

Label the appropriate angles and the ray you draw.

0	$\mathbf{9}$	2

$$
n=\frac{\text { speed of light in air }}{\text { speed of light in glass }}
$$

Figure 12 shows a ray of light entering and leaving a glass block. The diagram is actual size.

Figure 12

speed of light in air $=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Determine the speed of light in glass.
Take a measurement from the diagram.
Use the Physics Equations Sheet.
\qquad
Speed of light in glass = \qquad m/s

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad
	\qquad
	…....................

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

