Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.1	hydrogen		1	AO1 3.8.1b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.2	the core		1	AO1 3.8.1c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.3	nuclear fusion		1	AO1 3.8.1b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.4	electromagnetic radiation / wave	allow heat or light allow radiation	1	AO1 3.8.1f

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.5	red white black	allow 1 mark if 2 are correct allow 1 mark if red is correct but the last two stages are reversed	2	AO1 3.8.1h

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.6	supernova		1	AO1 3.8.1i

Total Question 1		7
------------------	--	---

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.1	28		1	AO2 3.7.1f

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.2	+1	allow positive	1	AO1 3.7.1c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.3	32		1	AO2 3.7.1f

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.4	0	allow neutral	1	AO1 3.7.1c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.5	a high energy electron ejected from the nucleus		1	AO1 3.7.2e

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.6	the number of protons in the atom changes		1	AO3 3.7.2f

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.7	middle row ticked		1	AO1 3.7.2g

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.1	W = 0.60 × 9.8		1	AO2
	W = 5.88 (N)	allow 5.9 (N)	1	3.1.1e

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.2	the same as the weight of the ball		1	AO1 3.1.3a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.3	18 = 0.60 × a		1	AO2 3.1.3h
	$a = \frac{18}{0.60}$		1	0.1.011
	$a = 30 \text{ (m/s}^2)$		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.4	decreases the time it takes for the ball to bounce back to the student's hand.		1	AO3 3.1.3h

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.5	kinetic energy decreases (as the ball slows down)		1	AO1 3.2.2a
	elastic potential energy increases (as the ball changes shape)		1	
	thermal energy of the ball / air increases	allow temperature increases	1	

Total Question 3		10
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.1	line starts at 0,0 and is horizontal for 10 minutes		1	AO3 3.4.1
	starts to increase at 10 minutes and continues to 20 minutes	allow curve or straight line	1	
	horizontal line after 20 minutes	line must remain horizontal after 20 minutes	1	
	30- 25 Temperature 20- in °C 15- 10- 5- 0 5 10	15 20 25 30 Time in minutes		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.2	temperature			AO4 3.4.1
	measured using a thermometer	allow temperature probe connected to a data- logger/computer	1	0
	stir the drink	allow read at eye level (to avoid parallax errors)	1	
	time			
	measured using a stopclock	allow stated times ie every minute	1	
	at regular intervals	allow if seen in answer for temperature	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.3	132 000 = 0.40 × L _F		1	AO2
	$L_{F} = \frac{132\ 000}{0.40}$		1	3.4.1d
	L _F = 330 000 (J/kg)		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.4	Arrangement			AO1 AO3
	the particles in (solid) ice are in a regular pattern		1	3.4.1a
	the particles in (liquid) water have no fixed arrangement	allow spacing between particles changes	1	
	Movement			
	the particles in (solid) ice vibrate about fixed position		1	
	the particles in (liquid) water are free to move		1	

Total Question 4		14
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.1	$6.0 \times 10^5 = \frac{Q}{4.0 \times 10^{-6}}$		1	AO1 AO2
	$Q = 6.0 \times 10^5 \times 4.0 \times 10^{-6}$		1	3.5.1c
	Q = 2.4		1	
	coulombs or C		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.2	$5.0 \times 10^6 = \frac{E}{2.4}$		1	AO2 3.5.1f
	$E = 5.0 \times 10^6 \times 2.4$		1	
	12 000 000		1	
	1.2 × 10 ⁷ J	allow ecf from question 05.1 allow use of E = IVt	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.3	distance = speed × time		1	AO3 3.3.3g
	speed of light is so great that time for light to travel to the detector is very small (negligible)		1	0.0.09
	so distance is time difference × speed of sound in air		1	

Total Question 5		11
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.1	any two from	1 mark for each variable and 1 mark for how each is controlled	4	AO4 3.2.3a
	 volume/mass of water should be the same each time measured with a measuring cylinder 	allow top pan balance for mass		
	 mass/volume of fuel burned should be the same each time measured using a balance 	allow a measuring cylinder for volume		
	 burn each fuel for the same time measured using a stopclock 			
	 change in temperature should be the same each time measured using a thermometer 			
		allow distance between the fuel burner and the beaker kept constant by using identical equipment.		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.2	transferred to the surroundings	allow a specific heating effect	1	AO3 3.2.3b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.3	$\frac{1.91}{8.3}$ = 0.23 (kg/kWh)		1	AO3 3.2.3c
	$\frac{1.37}{5.5} = 0.25 \text{ (kg/kWh)}$		1	
	0.23<0.25 so methanol is less polluting.	allow conclusion consistent with their calculations	1	
		allow answers given to more than 2 significant figures		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.4	hydrogen produces no pollution		1	AO3 3.2.3c
	most countries still generate electricity by burning fossil fuels		1	

Total Question 6		10
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
07.1	F = 4000 N		1	AO2 3.1.4c
	$4000 = \frac{m \times 80}{0.5}$	allow correct substitution using an incorrectly/not converted value of F	1	
	$m = \frac{4000 \times 0.5}{80}$	allow correct rearrangement using an incorrectly/not converted value of F	1	
	m = 25 kg	allow correct calculation using an incorrectly/not converted value of F	1	
		allow use of p = mv and F = Δp/t		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
07.2	p = 40 × 90		1	AO2 3.1.4b
	3600 kgm/s		1	0.1.45
	(momentum of cannon = 3600 kgm/s)			
	3600 = 1600 × v		1	
	v = 2.25 m/s	ignore minus signs	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
07.3	friction on the wheels		1	AO3 3.1.1b
	causes a resultant force in the opposite direction to motion		1	3.1.10
	causes deceleration		1	
	OR			
	friction on the wheels (1)			
	does work on the cannon (1)			
	reducing the <u>kinetic</u> energy of the cannon (1)			

Total Question 7		11
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
08.1	38 Ω resistor has a greater resistance		1	AO2 AO3 3.5.1h,r
	current is the same through both resistors		1	3.3.111,1
	V = I × R therefore product of IR is greater (for 38 Ω)		1	
	OR			
	I = 0.160 A (1)			
	38 Ω resistor V = 6.08 V			
	and			
	18 Ω resistor V = 2.88 V (1)			
	therefore potential difference across 38 Ω is greater			

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
08.2	I = 0.160 A		1	AO2 3.5.1h,r
	V = (18 + 38) × 0.160	allow correct substitution using an incorrectly/not converted value of I	1	
	8.96 V	allow correct calculation using an incorrectly/not converted value of I	1	
	9.0 V	allow 3 calculation marks for two separate V = I × R calculations added together	1	

Question	Answers	Mark	AO/ Spec. Ref.
08.3	Level 2: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	3–4	AO3 3.5.1s
	Level 1: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	1–2	
	No relevant content	0	
	Indicative content		
	in the series circuit, potential difference across each resistor is different		
	• in the series circuit, the potential difference across the 6 Ω resistor is greater than the potential difference across the 4 Ω resistor		
	in parallel circuit the potential difference across each resistor is the same (as the cell)		
	in the series circuit the current in each resistor is the same		
	 in the parallel circuit the current in each resistor is different 		
	• in the parallel circuit the current in the 4 Ω resistor is greater than the current in the 6 Ω resistor.		
	• the current in the cell in the parallel circuit is greater than the current in the cell in the series circuit.		
	the total resistance of the parallel circuit is less than the total resistance of the series circuit		
	• total resistance of the parallel circuit is less than 4 Ω .		
	To access level 2 there must be a comparison of both potential difference and current between both circuits.		

Total Question 8		11
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
09.1	refracted ray drawn at appropriate angle		1	AO1 AO4 3.3.5b
	angle of incidence labelled		1	0.0.02
	angle of refraction labelled		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
09.2	angle of incidence = 42°	allow 41° to 43° an incorrect angle does not prevent subsequent marks being awarded	1	AO2 3.3.5df
	$n = \frac{1}{\sin 42}$		1	
	n = 1.49	for subsequent marks to be awarded $n = \frac{1}{\sin c}$ must have been used	1	
	$1.49 = \frac{3.00 \times 10^8}{\text{speed of light in glass}}$	allow correct substitution using their calculated value of n.	1	
	speed of light in glass = $\frac{3.00 \times 10^8}{1.49}$	allow correct rearrangement using their calculated value of n.	1	
	speed of light in glass = 2.0 × 10 ⁸ m/s	allow correct calculation using their calculated value of n	1	

Total Question 9		9
------------------	--	---