Question 1

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 1 . 1}$	hydrogen		1	AO1 3.8 .1 b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 1 . 2}$	the core		1	AO1 $3.8 .1 c$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 1 . 3}$	nuclear fusion		1	AO1
				3.8 .1 b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 1 . 4}$	electromagnetic radiation / wave	allow heat or light allow radiation	1	AO1 3.8 .1 f

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 1 . 5}$	red	must be in this order	2	AO1 white black
	allow 1 mark if 2 are correct allow 1 mark if red is correct but the last two stages are reversed			

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 1 . 6}$	supernova		1	AO1
				3.8 .1 i

Question 2

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 1}$	28		1	AO2 $3.7 .1 f$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 2}$	+1	allow positive	1	AO1 $3.7 .1 c$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 3}$	32		1	AO2

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 4}$	0	allow neutral	1	AO1 3.7 .1 c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 5}$	a high energy electron ejected from the nucleus		1	AO1 $3.7 .2 e$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 6}$	the number of protons in the atom changes		1	AO3 $3.7 .2 f$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 2 . 7}$	middle row ticked		1	AO1 3.7 .2 g

Question 3

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 3 . 1}$	$\mathrm{W}=0.60 \times 9.8$		1	$\mathrm{AO2}$
	$\mathrm{~W}=5.88(\mathrm{~N})$	allow $5.9(\mathrm{~N})$	1	3.1 .1 e

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 3 . 2}$	the same as the weight of the ball		1	AO1 3.1 .3 a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 3 . 3}$	$18=0.60 \times \mathrm{a}$		1	AO2 $\mathrm{a}=\frac{18}{0.60}$ $=30\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
		1		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 3 . 4}$	decreases the time it takes for the ball to bounce back to the student's hand.		1	AO3 3.1 .3 h

Question	Answers	Extra information	Mark	$\begin{array}{c}\text { AO/ } \\ \text { Spec. Ref. }\end{array}$		
$\mathbf{0 3 . 5}$	$\begin{array}{l}\text { kinetic energy decreases } \\ \text { (as the ball slows down) } \\ \text { elastic potential energy } \\ \text { increases (as the ball } \\ \text { changes shape) }\end{array}$		1	$\begin{array}{c}\text { AO1 } \\ \text { thermal energy of the ball / } \\ \text { air increases }\end{array}$		
allow temperature increases					$] 1$	1
:---:						

Total Question 3		10

Question 4

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.2	temperature measured using a thermometer stir the drink time measured using a stopclock at regular intervals	allow temperature probe connected to a datalogger/computer allow read at eye level (to avoid parallax errors) allow stated times ie every minute allow if seen in answer for temperature	1 1 1	$\begin{aligned} & \text { AO4 } \\ & 3.4 .1 \end{aligned}$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 4 . 3}$	$132000=0.40 \times \mathrm{L}_{\mathrm{F}}$		1	$\mathrm{AO2}$
	$\mathrm{~L}_{\mathrm{F}}=\frac{132000}{0.40}$		1	3.4 .1 d
	$\mathrm{~L}_{\mathrm{F}}=330000(\mathrm{~J} / \mathrm{kg})$		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 4 . 4}$	Arrangement the particles in (solid) ice are in a regular pattern the particles in (liquid) water have no fixed arrangement Movement Moven the particles in (solid) ice vibrate about fixed position particles changes the particles in (liquid) water are free to move	1	AO1 AO3	

Question 5

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 5 . 1}$	$6.0 \times 10^{5}=\frac{\mathrm{Q}}{4.0 \times 10^{-6}}$		1	$\mathrm{AO1}$
	$\mathrm{Q}=6.0 \times 10^{5} \times 4.0 \times 10^{-6}$		1	3.5 .1 c
	Q $=2.4$		1	
	coulombs or C		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 5 . 2}$	$5.0 \times 10^{6}=\frac{\mathrm{E}}{2.4}$		1	$\mathrm{AO2}$
	$\mathrm{E}=5.0 \times 10^{6} \times 2.4$			
	12000000		1	3.5 .1 f
	$1.2 \times 10^{7} \mathrm{~J}$		1	
		allow ecf from question 05.1 allow use of $\mathrm{E}=\mathrm{IVt}$	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 5 . 3}$	distance $=$ speed \times time speed of light is so great that time for light to travel to the detector is very small (negligible)		1	AO3 so distance is time difference \times speed of sound in air

Question 6

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.1	any two from - volume/mass of water should be the same each time measured with a measuring cylinder - mass/volume of fuel burned should be the same each time measured using a balance - burn each fuel for the same time measured using a stopclock - change in temperature should be the same each time measured using a thermometer	1 mark for each variable and 1 mark for how each is controlled allow top pan balance for mass allow a measuring cylinder for volume allow distance between the fuel burner and the beaker kept constant by using identical equipment.	4	$\begin{gathered} \mathrm{AO} 4 \\ 3.2 .3 \mathrm{a} \end{gathered}$

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 6 . 2}$	transferred to the surroundings	allow a specific heating effect	1	AO3 $3.2 .3 b$

Question	Answers	Extra information	Mark	$\begin{array}{c}\text { AO/ } \\ \text { Spec. Ref. }\end{array}$
$\mathbf{0 6 . 3}$	$\frac{1.91}{8.3}=0.23(\mathrm{~kg} / \mathrm{kWh})$		1	$\begin{array}{c}\text { AO3 } \\ 3.2 .3 \mathrm{c}\end{array}$
	$\frac{1.37}{5.5}=0.25(\mathrm{~kg} / \mathrm{kWh})$			
	$\begin{array}{l}0.23<0.25 \text { so methanol is } \\ \text { less polluting. }\end{array}$	$\begin{array}{l}\text { allow conclusion consistent } \\ \text { with their calculations }\end{array}$	1	1
allow answers given to more				
than 2 significant figures				

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 6 . 4}$	hydrogen produces no pollution		1	AO3 most countries still generate electricity by burning fossil fuels

Total Question 6		10

Question 7

Question	Answers	Extra information	Mark	AOI Spec. Ref.
07.1	$\mathrm{F}=4000 \mathrm{~N}$	allow correct substitution using an incorrectly/not converted value of F	1	$\begin{gathered} \mathrm{AO} 2 \\ 3.1 .4 \mathrm{C} \end{gathered}$
	$4000=\frac{m \times 80}{0.5}$		1	
	$\mathrm{m}=\frac{4000 \times 0.5}{80}$	allow correct rearrangement using an incorrectly/not converted value of F	1	
	$\mathrm{m}=25 \mathrm{~kg}$	allow correct calculation using an incorrectly/not converted value of F	1	
		$\begin{aligned} & \text { allow use of } p=m v \text { and } \\ & F=\Delta p / t \end{aligned}$		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 7 . 2}$	$p=40 \times 90$		1	AO2 $3600 \mathrm{kgm} / \mathrm{s}$ $($ momentum of cannon $=$ $3600 \mathrm{kgm} / \mathrm{s})$ $3600=1600 \times \mathrm{v}$ $v=2.25 \mathrm{~m} / \mathrm{s}$
		1	3.1 .4 b	
	ignore minus signs	1		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 7 . 3}$	friction on the wheels causes a resultant force in the opposite direction to motion causes deceleration OR friction on the wheels (1) does work on the cannon (1) reducing the kinetic energy of the cannon (1)		1	AO3 3.1 .1 b

Question 8

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
08.1	38Ω resistor has a greater resistance		1	$\begin{gathered} \mathrm{AO} 2 \\ \mathrm{AO} 3 \\ \text { 3.5.1h,r } \end{gathered}$
	current is the same through both resistors		1	
	$\mathrm{V}=\mathrm{I} \times \mathrm{R}$ therefore product of $I \mathrm{R}$ is greater (for 38Ω)		1	
	OR			
	$\mathrm{I}=0.160 \mathrm{~A}(1)$			
	38Ω resistor $\mathrm{V}=6.08 \mathrm{~V}$			
	and			
	18Ω resistor $\mathrm{V}=2.88 \mathrm{~V}$ (1)			
	therefore potential difference across 38Ω is greater			

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 8 . 2}$	$\mathrm{I}=0.160 \mathrm{~A}$			
$\mathrm{~V}=(18+38) \times 0.160$	allow correct substitution using an incorrectly/not converted value of I allow correct calculation	1	1	AO 2 using an incorrectly/not converted value of I
	8.96 V	allow 3 calculation marks for two separate $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ calculations added together	1	1

Question	Answers	Mark	AOI Spec. Ref.
08.3	Level 2: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	3-4	$\begin{gathered} \mathrm{AO3} \\ 3.5 .1 \mathrm{~s} \end{gathered}$
	Level 1: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	1-2	
	No relevant content	0	
	Indicative content - in the series circuit, potential difference across each resistor is different - in the series circuit, the potential difference across the 6 Ω resistor is greater than the potential difference across the 4Ω resistor - in parallel circuit the potential difference across each resistor is the same (as the cell) - in the series circuit the current in each resistor is the same - in the parallel circuit the current in each resistor is different - in the parallel circuit the current in the 4Ω resistor is greater than the current in the 6Ω resistor. - the current in the cell in the parallel circuit is greater than the current in the cell in the series circuit. - the total resistance of the parallel circuit is less than the total resistance of the series circuit - total resistance of the parallel circuit is less than 4Ω. To access level 2 there must be a comparison of both potential difference and current between both circuits.		

Total Question 8		11

Question 9

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
$\mathbf{0 0 . 1}$	refracted ray drawn at appropriate angle		1	AO1
	angle of incidence labelled		1	3.3 .5 b
	angle of refraction labelled		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
09.2	angle of incidence $=42^{\circ}$	allow 41° to 43° an incorrect angle does not prevent subsequent marks being awarded	1	$\begin{gathered} \mathrm{AO} 2 \\ 3.3 .5 \mathrm{df} \end{gathered}$
	$\mathrm{n}=\frac{1}{\sin 42}$		1	
	$\mathrm{n}=1.49$	for subsequent marks to be awarded $\mathrm{n}=\frac{1}{\sin \mathrm{c}}$ must have been used	1	
	$\begin{aligned} & 1.49= \\ & \frac{3.00 \times 10^{8}}{\text { speed of light in glass }} \end{aligned}$	allow correct substitution using their calculated value of n.	1	
	speed of light in glass $=$ $\frac{3.00 \times 10^{8}}{1.49}$	allow correct rearrangement using their calculated value of n.	1	
	speed of light in glass $=$ $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$	allow correct calculation using their calculated value of n	1	

