OXFORD

INTERNATIONAL

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

INTERNATIONAL GCSE PHYSICS

Paper 1

Tuesday 10 November 2020 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you worked out your answer.

Information

- The maximum mark for this paper is 90 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

0	1	Figure 1 shows how electricity is distributed from a power station to consumers.

Figure 1

Choose answers from the box.
[2 marks]

generator	pylon	
step-down transformer	step-up transformer	transmission cable

X
Y \qquad
Z \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ Why is the electricity distributed at a high voltage?

Tick (\checkmark) one box.

The electricity distribution is more efficient.

The electricity distribution is faster.

The electricity distribution is safer.

Question 1 continues on the next page

Figure 2 shows how the voltage supplied to consumers varies with time.
Figure 2

| 0 | 1 | $\mathbf{3}$ Use Figure 2 to determine the time period of the voltage supplied to consumers. |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.
0.005 s \square
0.01 s \square
0.02 s \square
0.04 s \square

0	1	4

Use your answer from Question 01.3.
Use the equation

$$
\text { frequency }=\frac{1}{\text { time period }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
Frequency = \qquad Hz

0	1	5

What is meant by 'alternating current'?
\qquad
\qquad

Question 1 continues on the next page

A person watched television for 2 hours.
The power rating of the television was 0.40 kW .

0	$\mathbf{1} .6$	Calculate the energy transferred by the television.

Give your answer in kilowatt-hours.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
Energy transferred = \qquad kWh

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{7}$	The cost of electricity is $\$ 0.12$ per kilowatt-hour.

Calculate the cost of electricity used by the television in 2 hours.
Use your answer from Question 01.6.
\qquad
\qquad
\qquad
Cost of electricity = \$

Turn over for the next question

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

| $\mathbf{0}$ | $\mathbf{2}$ A student investigated different sounds using a microphone connected to |
| :--- | :--- | :--- | an oscilloscope.

The sound wave received by the microphone is shown on the oscilloscope.

Figure $\mathbf{3}$ shows the oscilloscope traces from two different sound waves \mathbf{A} and \mathbf{B}. The settings on the oscilloscope stayed the same for each sound wave.

Figure 3

| 0 | 2 | 1 |
| :--- | :--- | :--- | What do sound waves transfer?

Tick (\checkmark) one box.

Energy

Light

Matter

Particles

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ How do the traces on Figure $\mathbf{3}$ show that sound \mathbf{A} has a higher pitch than sound \mathbf{B} ?

\qquad
\qquad
$\begin{array}{lll}\mathbf{0} & \mathbf{2} . & \mathbf{3} \text { How do the traces on Figure } \mathbf{3} \text { show that sound } \mathbf{B} \text { is louder than sound } \mathbf{A} \text { ? }\end{array}$
\qquad
\qquad

| 0 | 2 | 4 | A sound wave has a wavelength of 0.11 m when travelling through air. |
| :--- | :--- | :--- | :--- | The speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Calculate the frequency of the sound wave.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Frequency = \qquad Hz

Question 2 continues on the next page

Table 1 shows the speed of sound in some different materials.

Table 1

Material	Speed in metres per second
Glass	4500
Gold	3300
Lead	1200
Water	1500

Figure 4 shows one of the speeds plotted on a bar chart.

Figure 4

| 0 | 2 | $\mathbf{5}$ Plot the remaining speeds in Table 1 on the bar chart in Figure 4. |
| :--- | :--- | :--- | :--- |

| 0 | 2 | 6 |
| :--- | :--- | :--- | Why is drawing a bar chart more appropriate than drawing a line graph for the data in Table 1?

\qquad
\qquad

0	2	7	Suggest why sound waves travel faster through a liquid than they do through a gas.

\qquad
\qquad

Question 2 continues on the next page

Figure 5 shows ultrasound being used to determine the height of water in a container.
Figure 5

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{8}$ Ultrasound waves are beyond the limit of human hearing. |
| :--- | :--- | :--- | :--- |

What is the maximum frequency humans can hear?
Tick (\checkmark) one box.

200 Hz

2000 Hz

20000 Hz

200000 Hz

$\begin{array}{lll}0 & 2 & 9\end{array}$
Tick (\checkmark) one box.

Diffraction

Reflection

Refraction

Total internal reflection

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$	$\mathbf{0}$ The ultrasound wave in Figure $\mathbf{5}$ travels for a total time of 0.0020 s.

The speed of the ultrasound is $330 \mathrm{~m} / \mathrm{s}$.

Calculate the distance travelled by the ultrasound.
Use the equation

$$
\text { distance }=\text { speed } \times \text { time }
$$

Give your answer in cm.
\qquad
\qquad
\qquad
\qquad
\qquad
Distance travelled = \qquad cm

| $\mathbf{0}$ | $\mathbf{3}$ A student investigated how the current in a resistor varies with the potential difference |
| :--- | :--- | :--- | across the resistor.

Figure 6 shows some of the equipment the student used.

Figure 6

0	3	1
1		

You may include a circuit diagram in your answer.

0	3	2

Figure 7

Determine the resistance of the resistor when there is a potential difference of 10 V across it.

Use Figure 7 and the Physics Equations Sheet.
Choose the unit from the box.

\mathbf{A}	Hz	$\mathbf{\Omega}$	\mathbf{V}

\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Unit \qquad

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ Figure $\mathbf{8}$ shows how current varies with potential difference for a resistor at constant |
| :--- | :--- | :--- | :--- | temperature and a filament lamp.

Figure 8

Resistor at constant temperature

Filament lamp

Compare the resistance of a resistor at constant temperature with the resistance of a filament lamp.

Use Figure 8.
\qquad
\qquad
\qquad
\qquad
\qquad

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0	$\mathbf{4}$	A pendulum bob is a heavy spherical mass.

Figure 9 shows a pendulum bob suspended by a piece of thread.

Figure 9

$\begin{array}{llll}0 & \mathbf{4} & 1 & 1\end{array}$
Explain why the pendulum bob is stationary.
Use ideas about forces in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A student pulls the pendulum bob to one side and releases it.

Figure 10 shows the path of the pendulum bob when it is released from position \mathbf{A}. Position \mathbf{A} is at the same height as position \mathbf{C}.

Figure 10

0	4	2
2		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 3 |
| :--- | :--- | :--- | using a stopclock.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 continues on the next page

0	4	4	The student replaced the pendulum bob with a paper cone as shown in Figure 11.

Figure 11

The student pulled the paper cone to one side and released it.
Figure 12 shows how the displacement of the paper cone varied with time.
Figure 12

Explain why the maximum displacement of the paper cone decreased as time increased.
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	Visible light and X-rays are both part of the electromagnetic spectrum.

Visible light and X-rays are both transverse waves.

0	5	1	Give one other similarity between visible light and X-rays.

\qquad
\qquad
$\begin{array}{lll}\mathbf{0} & \mathbf{5} .2 \text { Give three differences between visible light and X-rays. }\end{array}$

1
\qquad

2 \qquad
\qquad
3 \qquad
\qquad

0	5	3

\qquad
\qquad

At sea ports, some lorries go through X-ray scanners to check what is inside the soft-sided container.

Figure 13 shows a lorry going through an X-ray scanner.

Figure 13

Figure 14 shows an image taken using the X -ray scanner.

Figure 14

$\mathbf{0}$	$\mathbf{5} .4$	Explain why X-rays can be used to produce the image in Figure 14.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ The driver does not need to get out of the lorry when the lorry is scanned with X-rays. |
| :--- | :--- | :--- | Suggest two reasons why it is safe for the driver to stay in the lorry.

1
\qquad
2 \qquad

Turn over for the next question

| 0 | 6 |
| :--- | :--- | Radioactive isotopes can be used by doctors in hospitals.

| 0 | 6 | 1 | A doctor measures the amount of ionising radiation in the air using a count-rate meter |
| :--- | :--- | :--- | :--- | when no radioactive source was present.

The count-rate meter measures the amount of ionising radiation detected each second.

Explain why the reading on the count-rate meter keeps changing.
\qquad
\qquad
\qquad

The doctor uses a sample of radium-226 during the treatment of a patient.
Radium-226 emits both alpha and gamma radiation.

06 . 2 Radium (Ra) is radioactive and can decay into Radon (Rn) by alpha emission.
Complete the equation for radium-226 as it decays by alpha emission.

The sample of radium- 226 is stored in a lead-lined box.

$\mathbf{0}$	6	$\mathbf{3}$ Why is the sample of radium- 226 stored in the lead-lined box when not in use?

\qquad
\qquad

| 0 | 6 | 4 |
| :--- | :--- | :--- | The doctor took the radioactive source out of the box.

Suggest two safety precautions the doctor should take.

1 \qquad
\qquad

2 \qquad
\qquad

Question 6 continues on the next page

| 0 | 6 | 5 | The doctor measured the count rate from the sample. The count rate was 80 counts |
| :--- | :--- | :--- | :--- | per second.

half-life of radium-226 $=1600$ years

Calculate the count rate in 6400 years.
\qquad
\qquad
\qquad
\qquad
\qquad
Count rate $=$ \qquad counts per second

| 0 | 6 | 6 |
| :--- | :--- | :--- | or contaminated.

Describe the difference between irradiation and contamination.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | 6 | .7 |
| :--- | :--- | :--- | Radioactive tracers are radioactive isotopes that are injected into the body. The isotope is transported around the body by the blood.

The radiation emitted by the isotope is then detected outside the body.

Table 2 shows some properties of four radioactive isotopes.

Table 2

Radioactive isotope	Half-life	Type of emission
Argon-39	270 years	beta
Lanthanum-117	10 milliseconds	gamma
Radium-226	1600 years	alpha and gamma
Technetium-99	6 hours	gamma

Explain which radioactive isotope is most suitable to use as a radioactive tracer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{7}$ | An energy meter measured the amount of energy transferred by a washing machine |
| :--- | :--- | :--- | to heat some water.

Figure 15 shows the energy meter.

Figure 15

Figure 16 shows a graph of the data collected by the energy meter

Figure 16

| 0 | $\mathbf{7}$ | $\mathbf{1}$ Describe the relationship between the energy transferred by the washing machine and |
| :--- | :--- | :--- | time, as the water was heated.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ The washing machine uses a heating element to heat the water. |
| :--- | :--- | :--- | :--- |

The potential difference across the heating element is 230 V .

Determine the current in the heating element while the washing machine was heating the water.

Use the Physics Equations Sheet.
\qquad
Current $=$ A

Question 7 continues on the next page

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ A different washing machine transfers 380000 joules during a washing cycle. |
| :--- | :--- | :--- | :--- |

65% of the energy transferred by the washing machine is used to heat the water from $11^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

Calculate the mean mass of water heated by the washing machine.
Give your answer to 2 significant figures.
Use the Physics Equations Sheet.
\qquad
Mean mass of water (2 significant figures) = \qquad kg

END OF QUESTIONS

