AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE PHYSICS

Foundation Tier

Paper 2

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- a protractor
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
\qquad

| 0 | 1 |
| :--- | :--- | When two magnets are close together they exert a force on each other.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ Complete Table 1 to show if the magnets would attract or repel. |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box in each row.
Table 1

0	1	2

Figure 1

Which statements are true for the magnetic field shown in Figure 1?
Tick (\checkmark) two boxes.

The magnetic field gets weaker further from the magnet.

The magnetic field is strongest at the poles.

The magnetic field is uniform away from the poles.

The magnetic field lines all meet at a single point.

The magnetic field lines point from south to north.

Question 1 continues on the next page

Figure 2 includes an electromagnet.

Figure 2

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$ Which metal is used to make the core of the electromagnet?

Tick (\checkmark) one box.

Aluminium

Copper

Iron

Magnesium

0	1	4	Complete the sentence.

Choose the answer from the box.

coil	metal core	paper clip

The switch is closed. There is a current in the \qquad .

| 0 | 1 | $\mathbf{5}$ The number of turns on the coil is increased. The current remains the same. |
| :--- | :--- | :--- | :--- |

How does this affect the strength of the magnetic field around the electromagnet?
Tick (\checkmark) one box.

The magnetic field would be stronger.

The magnetic field would stay the same.

The magnetic field would be weaker.

| 0 | 1 | 6 |
| :--- | :--- | :--- | The metal core was removed. The current remains the same.

How does this affect the strength of the magnetic field around the electromagnet?
[1 mark]
Tick (\checkmark) one box.

The magnetic field would be stronger.

The magnetic field would stay the same.

The magnetic field would be weaker.

Hailstones are small balls of ice. Hailstones form in clouds and fall to the ground.
Figure 3 shows different-sized hailstones.
Figure 3

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$ Which force causes the hailstones to fall to the ground?

Tick (\checkmark) one box.

Air resistance

Gravitational force

Magnetic force

Tension \square

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ As the hailstones begin to fall they accelerate.

Which force increases as the hailstones accelerate?
Tick (\checkmark) one box.

Air resistance

Gravitational force

Magnetic force

Tension

| $\mathbf{0}$ | $\mathbf{2}$. | 3 |
| :--- | :--- | :--- | After a short time hailstones fall at terminal velocity.

Which of the following statements is true at terminal velocity?
Tick (\checkmark) one box.

The hailstones begin to slow down.

The mass of the hailstones increases.

The resultant force on the hailstones is zero.

Question 2 continues on the next page

A scientist investigated how the terminal velocity of hailstones varies with their diameter.

Figure 4 shows the results.
Figure 4

$\mathbf{0}$	$\mathbf{2} .4$	Estimate the terminal velocity for a hailstone with a diameter of 80 mm.

Show how you obtain your answer.
Show hour
\qquad
\qquad
\qquad
Terminal velocity $=$ \qquad m / s

| $\mathbf{0}$ | $\mathbf{2} .5$ Give one reason why a hailstone with a large diameter has a greater terminal velocity |
| :--- | :--- | :--- | than a hailstone with a smaller diameter.

Tick (\checkmark) one box.

It has a greater power. \square

It has a greater pressure.

It has a greater temperature.

It has a greater weight.

Question 2 continues on the next page

After falling, the hailstone hits the ground.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{6}$ What is the magnitude of the resultant force on the hailstone in Figure 5?

Tick (\checkmark) one box.
0.15 N
0.48 N
\square
0.63 N

0.78 N

$\mathbf{0}$	$\mathbf{2}$.
$\mathbf{7}$	What is the direction of the resultant force on the hailstone in Figure 5?

Figure 5 shows the forces acting on the hailstone at the moment it hits the ground.
Figure 5

$\mathbf{0}$	$\mathbf{3}$	The Sun is at the centre of our solar system.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ |
| :--- | :--- | :--- | What type of object is the Sun?

0	3	$\mathbf{2}$ What is the name of the galaxy our solar system is part of?

Tick (\checkmark) one box.

Andromeda

Milky Way \square
Sombrero

Tadpole \square

Table 2 gives information about some of the moons in our solar system.

Table 2

Moon	Radius in kilometres
Ganymede	2630
Titan	2570
Europa	1560
Charon	606

$\mathbf{0}$	$\mathbf{3}$.
$\mathbf{3}$ What is a moon?	

| 0 | $\mathbf{3} .4$ | $\mathbf{4}$ A student researched the radius of some planets in the solar system. |
| :--- | :--- | :--- | :--- |

radius of largest dwarf planet $=1190 \mathrm{~km}$
radius of smallest planet $=2440 \mathrm{~km}$
The student made the following conclusions:

1. dwarf planets are always smaller than moons
2. planets are always bigger than moons.

Give one reason why each of the student's conclusions is wrong.
Use the data given above and in Table 2.

1
\qquad

2 \qquad
\qquad

Question 3 continues on the next page

The Earth's Moon and the International Space Station both orbit the Earth.

0	3	5
5		

Similarity \qquad
\qquad
Difference \qquad
\qquad

0	$\mathbf{3}$	6	Very few people have been to the International Space Station.

Suggest one reason why very few people have been to the International Space Station.
\qquad
\qquad

Figure 6

| 0 | $\mathbf{4}$ | $\mathbf{1}$ What name is given to point \mathbf{X} in Figure 6? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Centre of force

Centre of mass

Centre of balance

Centre of weight

| 0 | 4 | 2 |
| :--- | :--- | :--- | Weight and mass are not the same.

The relationship between weight and mass for an object can be written as:
weight \propto mass
Which sentence describes the relationship between weight and mass?
Tick (\checkmark) one box.

Weight is approximately equal to mass. \square
Weight is directly proportional to mass.

Weight is less than mass.

Figure 7 shows a balance used to measure the mass of 5 oranges.
Figure 7

0	4	3

Determine the mass of 1 orange.
\qquad
Mass = kg
$\begin{array}{lll}0 & 4 & 4 \\ 4 & \text { Calculate the weight of } 1 \text { orange. }\end{array}$
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
\qquad
Weight =

The balance shown in Figure 7 contains a spring.
Figure 8 shows the spring with no force acting on it and with a force of 6.0 N acting on it.

Figure 8

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{5}$ What is the extension of the spring when a force of 6.0 N acts on it?

Tick (\checkmark) one box.
0.015 m

0.035 m

0.050 m

0.085 m

0	4	6	Calculate the spring constant of the spring.

Use the equation:

$$
\text { spring constant }=\frac{\text { force }}{\text { extension }}
$$

\qquad
\qquad
\qquad

| 0 | 4 | $\mathbf{7}$ |
| :--- | :--- | :--- | What will happen to the spring when the force is removed?

0	5	Ultraviolet and visible light are both parts of the electromagnetic spectrum.

| $\mathbf{0}$ | $\mathbf{5} .1$ | $\mathbf{1}$ How does the speed of ultraviolet in a vacuum compare to the speed of visible light in |
| :--- | :--- | :--- | a vacuum?

Tick (\checkmark) one box.

Ultraviolet travels at a faster speed than visible light.

Ultraviolet travels at a slower speed than visible light.

Ultraviolet travels at the same speed as visible light.

0	5	2

Figure 9

Radio waves	A	B	C	D	X-rays	Gamma rays

Which letters represent the positions of ultraviolet and visible light in the electromagnetic spectrum?

Ultraviolet
Visible light
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$ Table $\mathbf{3}$ shows the range of wavelengths for different types of ultraviolet. l . ${ }^{2}$.

Table 3

Type	Range of wavelength in nanometres
Ultraviolet A (UVA)	$315-400$
Ultraviolet B (UVB)	$280-315$
Ultraviolet C (UVC)	$100-280$

Determine which type of ultraviolet shown in Table 3 has the largest range of wavelengths.

To gain full marks you must calculate the range of wavelengths for each type of ultraviolet.
\qquad
\qquad
\qquad
\qquad
Type of ultraviolet with the largest range of wavelengths \qquad

Figure 10 shows how different types of ultraviolet are absorbed by the ozone layer in the Earth's atmosphere.

Table 4 shows the relative ionising power from each type of ultraviolet.
Figure 10

Table 4

Type	Relative ionising power
UVA	Low
UVB	Medium
UVC	High

| 0 | 5 | 4 |
| :--- | :--- | :--- | of ultraviolet.

Use Figure 10 and Table 4.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{5}$	$\mathbf{5}$	The Sun emits visible light.

A student concludes that visible light is not absorbed by the ozone layer.
Give one piece of evidence that shows the student's conclusion is correct.
\qquad
\qquad

0	5	6

Figure 11

Complete the sentence.
Choose the answers from the box.

absorbed	radiated	reflected	refracted	transmitted

When white light is incident on the filter, only blue light is \qquad and all other colours of light are \qquad .

0	6

0	6	1

Which of the following could be an approximate depth of the Earth's atmosphere? [1 mark]
Tick (\checkmark) one box.

100 km

6400 km

100000 km

640000 km

| 0 | 6 | 2 |
| :--- | :--- | :--- | What state of matter is most of the Earth's atmosphere?

Tick (\checkmark) one box.

Gas

Liquid \square

Solid

Figure 12 shows how atmospheric pressure varies with height above sea level.
Figure 12

$\begin{array}{lllll}0 & 6 & 3 & \text { The highest point above sea level in England is the top of a mountain called }\end{array}$ Scafell Pike.

The height above sea level of Scafell Pike is 978 m .
Determine the atmospheric pressure at the top of Scafell Pike.
Use Figure 12.
\qquad
\qquad
Atmospheric pressure $=$

| $\mathbf{0}$ | $\mathbf{6} .4$ Determine the difference between the atmospheric pressure at sea level and at the |
| :--- | :--- | :--- | top of Scafell Pike.

Use Figure 12 and your answer from Question 06.3
\qquad
\qquad
Difference in atmospheric pressure $=$ \qquad Pa

0	6	5
5		

Why does the atmospheric pressure decrease as the student climbs higher?
Tick (\checkmark) two boxes.

The air exerts a greater force on the student.

The density of the air decreases.

The mass of air above the student decreases.

The temperature of the air increases.

The volume of air above the student increases.

Question 6 continues on the next page

0	6	6	Figure 13 shows a mountain lake.

Figure 13

The lake has a surface area of $2000 \mathrm{~m}^{2}$.
Atmospheric pressure exerts a force of 188000000 N on the surface of the lake.

Calculate the atmospheric pressure at the surface of the lake.
Use the equation:

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

\qquad
\qquad
\qquad
\qquad
Atmospheric pressure $=$ \qquad Pa

urface of the lake.

$\mathbf{0}$	$\mathbf{7}$	Sound travels as longitudinal waves.

0	$\mathbf{7} .1$	$\mathbf{1}$

Choose the answers from the box.

The distance between the centre of one compression of a sound wave and the centre of the next compression is called the \qquad .

The number of waves passing a point each second is called the
\qquad .

0	$\mathbf{7}$	2

Choose the answer from the box.

opposite perpendicular parallel

In a longitudinal wave, the oscillations are \qquad
to the direction of energy transfer.

Question 7 continues on the next page

0	$\mathbf{7}$	$\mathbf{3}$	A sound wave has a frequency of 8.0 kHz .

Which of the following is the same as 8.0 kHz ?
Tick (\checkmark) one box.
0.0080 Hz

8.0 Hz

8000 Hz

800000 Hz

| 0 | $\mathbf{7}$ | $\mathbf{4}$ Calculate the period of a sound wave with a frequency of 8.0 kHz . |
| :--- | :--- | :--- | :--- |

Use the Physics Equations Sheet.
\qquad
\qquad
Period $=$ s

speed of sound $=330 \mathrm{~m} / \mathrm{s}$
Use the equation:

$$
\text { wavelength }=\frac{\text { speed }}{\text { frequency }}
$$

Choose the unit from the box.

$\mathbf{k g}$	\mathbf{m}	\mathbf{N}

\qquad
\qquad
\qquad
\qquad
Wavelength $=$ \qquad Unit \qquad

Question 7 continues on the next page

Figure 14 shows the arrangement of two loudspeakers at a concert venue.

Figure 14

The loudspeakers in Figure 14 are tested by playing the same song through both loudspeakers.

A sound technician listens to the song.

Use the Physics Equations Sheet to answer questions 07.6 and 07.7.

$\mathbf{0}$	$\mathbf{7} .6$	Write down the equation which links distance (s), speed (v) and time (t)....$~$

\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{7}$

speed of sound $=330 \mathrm{~m} / \mathrm{s}$
Calculate the time taken for the sound to travel from loudspeaker \mathbf{A} to the technician.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Time taken $=$ \qquad s

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{8}$	The sound from each loudspeaker travels at the same speed.

For the sound technician to hear the song clearly, the sound from loudspeaker B should be emitted slightly before the sound from loudspeaker \mathbf{A}.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

0	8	Figure 15 shows an electric super-car.

Figure 15

0	$\mathbf{8}$.	$\mathbf{1}$ The battery in an electric car needs to be recharged.

Suggest two factors that affect the distance an electric car can travel before the battery needs to be recharged.

1

2 \qquad

Use the Physics Equations Sheet to answer questions $\mathbf{0 8 . 2}$ and 08.3.

| $\mathbf{0}$ | $\mathbf{8} .2$ | Write down the equation which links acceleration (a), change in velocity (Δv) and time |
| :--- | :--- | :--- | :--- | taken (t).

[1 mark]
\qquad

| $\mathbf{0}$ | $\mathbf{8}$. | 3 |
| :--- | :--- | :--- | The maximum acceleration of the car is $20 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the time taken for the speed of the car to change from $0 \mathrm{~m} / \mathrm{s}$ to $28 \mathrm{~m} / \mathrm{s}$ at its maximum acceleration.
\qquad
\qquad
\qquad
\qquad
\qquad
Time taken $=$ s

Question 8 continues on the next page

| $\mathbf{0}$ | $\mathbf{8} .4$ | In a trial run, the car accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches its final velocity. |
| :--- | :--- | :--- | :--- |

distance travelled by the car $=605 \mathrm{~m}$
initial velocity of the car $=0 \mathrm{~m} / \mathrm{s}$

Calculate the final velocity of the car.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Final velocity = \qquad m / s

Use the Physics Equations Sheet to answer questions 08.5 and 08.6.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{5}$ Write down the equation which links distance (s), force (F) and work done (W)....$~$ |
| :--- | :--- | :--- | :--- | [1 mark]

\qquad

| 0 | 8 | 6 |
| :--- | :--- | :--- | When travelling at its maximum speed the air resistance acting on the car is 4000 N . Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed.

\qquad
\qquad
\qquad
\qquad
Work done = \qquad J
保

| 0 | 9 |
| :--- | :--- | A student used a ray box to shine a ray of light through air into a glass block.

The student investigated how the angle of refraction varied with the angle of incidence.

Table 5 shows the results.

Table 5

Angle of incidence in degrees	Angle of refraction in degrees
10	5
20	10
30	14
40	19
50	23
60	26
70	28
80	29

0	9	1
Describe a method the student could have used to obtain the results in Table 5.		

Your answer may include a labelled diagram.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	9	2	Figure 16 is an incomplete graph of the results.

Figure 16

Complete Figure 16 using data from Table 5.

- Label the axes.
- Plot the remaining data.
- Draw a line of best fit.

| 0 | 9 | 3 | $C o m p l e t e ~ t h e ~ r a y ~ d i a g r a m ~ i n ~ F i g u r e ~$ |
| :--- | :--- | :--- | :--- | of a plane mirror.

You should:

- draw the normal line
- draw the reflected ray.

Figure 17

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{4}$ Two students investigated the reflection of light by a plane mirror.

Figure 18 shows the different equipment the students used.
Figure 18

Explain two ways that Method A is better than Method B.
[4 marks]
1
\qquad
\qquad
\qquad

2 \qquad
\qquad
\qquad

END OF QUESTIONS

Do not write outside the box

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2022 AQA and its licensors. All rights reserved.

