$A Q A R$

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- | Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level PHYSICS

Paper 2

Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
$7-31$	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 85 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
\qquad

Section A

Answer all questions in this section.

0	1	Figure 1 shows an electric steam iron.

Figure 1

Water from a reservoir drips onto an electrically-heated metal plate. The water boils and steam escapes through holes in the metal plate.

The electrical power of the heater inside the iron is 2.1 kW .
Assume that all the energy from the heater is transferred to the metal plate.
 The heater is switched on. After a time t the metal plate reaches its working temperature of $125^{\circ} \mathrm{C}$.

Calculate t.

$$
\text { specific heat capacity of the metal }=450 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
$$

0	1	2	The metal plate is maintained at its working temperature.

Water at $20^{\circ} \mathrm{C}$ drips continuously onto the metal plate.
Steam at $100^{\circ} \mathrm{C}$ emerges continuously from the iron.
The maker claims that the iron can generate steam at a rate of $60 \mathrm{~g} \mathrm{~min}^{-1}$.
Determine whether this claim is true.
specific latent heat of vaporisation of water $=2.3 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$
specific heat capacity of water $=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

$$
1
$$

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ In the kinetic theory model, it is assumed that there are many identical particles |
| :--- | :--- | :--- | moving at random.

State two other assumptions made in deriving the equation $p V=\frac{1}{3} \mathrm{Nm}\left(c_{\mathrm{rms}}\right)^{2}$.
[2 marks]
1
\qquad
\qquad
2 \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ Explain why molecules of a gas exert a force on the walls of a container. |
| :--- | :--- | :--- | :--- |

Refer to Newton's laws of motion in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The mean kinetic energy of the gas molecules is $6.7 \times 10^{-21} \mathrm{~J}$.
Calculate the amount of gas in the container.
\qquad mol

| $\mathbf{0}$ | $\mathbf{2} .4$ | Figure $\mathbf{2}$ shows the variation of pressure with volume for a fixed mass of an ideal gas |
| :--- | :--- | :--- | :--- | at constant absolute temperature T.

Draw, on Figure 2, the graph for the same gas at temperature $2 T$.

Figure 2

| 0 | $\mathbf{3} \quad$ An isolated solid conducting sphere is initially uncharged. |
| :--- | :--- | :--- |

Electrons are then transferred to the sphere.

0	3	1
1	State and explain the location of the excess electrons.	

\qquad
\qquad
\qquad
\qquad
\qquad

Figure 3 shows how the electric potential V varies with distance r from the centre of the sphere.
The radius of the sphere is 0.10 m .
Figure 3

| $\mathbf{0}$ | $\mathbf{3} .2$ |
| :--- | :--- | :--- | The magnitude of the electric field strength E is related to V by $E=\frac{\Delta V}{\Delta r}$.

Determine, using this relationship, the magnitude of the electric field strength at a distance 0.30 m from the centre of the sphere.

State an appropriate SI unit for your answer.
\qquad unit \qquad

| 0 | 3 | 3 |
| :--- | :--- | :--- |${ }^{2}$ The sphere acts as a capacitor because it stores charge at an electric potential.

Show that the capacitance of the sphere is approximately $1 \times 10^{-11} \mathrm{~F}$.

| 0 | 3 | 4 | $E l e c t r o n s ~ l e a k ~ a w a y ~ f r o m ~ t h e ~ s p h e r e ~ w i t h ~ t i m e ~ a n d ~ t h e ~ a m o u n t ~ o f ~ e n e r g y ~ s t o r e d ~ b y ~ t h e ~$ |
| :--- | :--- | :--- | :--- | sphere decreases. At one instant, the magnitude of the electric potential of the sphere has fallen to $1.0 \times 10^{6} \mathrm{~V}$.

Calculate, for this instant, the change in the energy stored by the sphere.
change in energy $=$ \qquad

| $\mathbf{0}$ | $\mathbf{4}$ The lines in Figure 4 show the shape of the gravitational field around two stars G |
| :--- | :--- | and H .

Figure 4

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2} \quad \mathbf{X}$ and \mathbf{Y} are two points in the field. |
| :--- | :--- | :--- | :--- |

Annotate Figure $\mathbf{4}$ to show the field direction at \mathbf{X} and the field direction at \mathbf{Y}.

Question 4 continues on the next page

The gravitational field strength at its surface is $0.40 \mathrm{~N} \mathrm{~kg}^{-1}$.
Calculate the radius R of \mathbf{P}.
 The distance r is measured from the centre of \mathbf{P}.

Figure 5

 Figure 5.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 continues on the next page

Asteroid \mathbf{P} approaches the two stars \mathbf{G} and \mathbf{H}.

Figure 6 shows one position of \mathbf{P} close to \mathbf{H}.
Figure 6

The mass of \mathbf{H} is $3.00 \times 10^{25} \mathrm{~kg}$ and the mass of \mathbf{P} is $2.00 \times 10^{20} \mathrm{~kg}$.
The distance HP is $1.50 \times 10^{11} \mathrm{~m}$.
Calculate the magnitude of the acceleration of \mathbf{P}.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{7}$	Explain why \mathbf{P} cannot have a circular orbit around \mathbf{H}.

Do not write outside the box

Turn over for the next question

0	5	Figure 7 shows a transformer.

Figure 7

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$ Explain the functions of the core and the secondary coil.

core \qquad
\qquad
\qquad
\qquad
secondary coil \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{5} .2$ | Figure 8 shows a cross-section through the transformer core. Thin iron sheets are |
| :--- | :--- | :--- | :--- | separated by material M.

Explain how the efficiency of the transformer is increased by constructing the core in this way.

Figure 8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 9 shows a schematic diagram of a power transmission system.
Figure 9

Suggest why engineers have chosen 132 kV for this system.
\qquad
\qquad
\qquad
\qquad
\qquad
Question 5 continues on the next page

0	5	4	The industrial consumers use 72 MW of power.

Transformers 1 and 2 each have an efficiency of 98% and the transmission line has an efficiency of 94%.

Calculate the current in the 25 kV line from the power station.

| $\mathbf{0}$ | $\mathbf{6}$ Fission and fusion are two processes that can result in the transfer of binding energy |
| :--- | :--- | :--- | :--- | from nuclei.

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$	State what is meant by the binding energy of a nucleus.

\qquad
\qquad
\qquad
\qquad

$$
\text { mass of }{ }_{26}^{56} \text { Fenucleus }=9.288 \times 10^{-26} \mathrm{~kg}
$$

\qquad

Figure 10 shows a graph of average binding energy per nucleon against nucleon
number for common nuclides. number for common nuclides.

Figure 10

0	6	3

Annotate Figure 10 with F_{1} and F_{2} to show one possible pair of nuclides resulting from the fission of \mathbf{X}.

0	6	.4	Figure 11 shows a graph of N against Z for stable nuclides.

Figure 11

Deduce the likely initial mode of decay of F_{1} and F_{2}. Refer to Figure 11 in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section B

Each of Questions $\mathbf{0 7}$ to $\mathbf{3 1}$ is followed by four responses, A, B, C and D.

For each question select the best response.

Only one answer per question is allowed.
For each question, completely fill in the circle alongside the appropriate answer.
CORRECT METHOD
WRONG METHODS $\propto \odot \otimes$
If you want to change your answer you must cross out your original answer as shown.
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| 0 | 7 |
| :--- | :--- | An ideal gas, initially at 300 K , is compressed to half its original volume. It is then cooled at constant volume until the pressure is restored to its initial value.

What is the final temperature of the gas?

A 150 K \square

B 200 K \square

C 300 K \square
D 600 K \square

0	8	A fixed volume of an ideal gas is heated.

Which row gives quantities that double when the kelvin temperature of the gas doubles?
[1 mark]

A	rms speed of the molecules	pressure of the gas
B	density of the gas	rms speed of the molecules
C	internal energy of the gas	density of the gas

| 0 | 9 |
| :--- | :--- | A planet of radius R and mass M has a gravitational field strength of g at its surface.

Which row describes a planet with a gravitational field strength of $4 g$ at its surface?

	Radius of planet	Mass of planet
A	$2 R$	$2 M$
B	$R \sqrt{2}$	$\frac{M}{2}$
C	$\frac{R}{\sqrt{2}}$	$\frac{M}{2}$
D	$\frac{R}{\sqrt{2}}$	$2 M$

1	$\mathbf{0}$

What is the angular speed of the Moon's orbit?

A $4.3 \times 10^{-7} \mathrm{rad} \mathrm{s}^{-1} \quad 0$
B $2.7 \times 10^{-6} \mathrm{rad} \mathrm{s}^{-1} \quad 0$
C $3.7 \times 10^{-2} \mathrm{rad} \mathrm{s}^{-1} \quad 0$
D $2.3 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1} \quad \square$

11 The radius of the Earth is R and the acceleration due to gravity at the surface of the Earth is g.

What is the escape velocity for a mass m at the surface of the Earth?

A $\sqrt{g R}$ \square

B $\sqrt{2 g R}$ \square

C $\sqrt{2 m g R}$

D $\sqrt{\frac{2 g R}{m}}$ \square

| 1 | 2 |
| :--- | :--- | A planet has a mass M and a radius R.

Loose material at the equator only just remains in contact with the surface of the planet. This is because the speed at which the planet rotates is very large.

What is the period of rotation of the planet?

A $2 \pi \sqrt{\frac{R^{2}}{G M}}$

B $2 \pi \sqrt{\frac{G M}{R^{2}}}$

C $2 \pi \sqrt{\frac{R^{3}}{G M}}$

D $2 \pi \sqrt{\frac{G M}{R^{3}}}$

 The orbital radius of \mathbf{N} is less than that of \mathbf{F}.

Which is smaller for \mathbf{N} than for \mathbf{F} ?

A the gravitational force on the satellite \square
B the speed of the satellite \square
C the kinetic energy of the satellite \square
D the orbital period of the satellite \square

14 When an electron moves at a speed v perpendicular to a uniform magnetic field of flux density B, the radius of its path is R.

A second electron moves at a speed $\frac{v}{2}$ perpendicular to a uniform magnetic field of flux density $4 B$.

What is the radius of the path of the second electron?

A $\frac{R}{8}$

B $\frac{R}{4}$

C $2 R$

D $8 R$

| 1 | 5 | A particle of mass m and charge Q is accelerated from rest through a potential |
| :--- | :--- | :--- | difference V. The final velocity of the particle is u.

A second particle of mass $\frac{m}{2}$ and charge $2 Q$ is accelerated from rest through a potential difference $2 V$.

What is the final velocity of the second particle?

A $\sqrt{2} u$
0
B $2 \sqrt{2} u$
0
C $4 u$
0

D $8 u$ \square

The length $\mathbf{R S}$ is perpendicular to the field and the line $\mathbf{S T}$ is parallel to the field.

What is the total change in electrical potential energy for a charge of $3.0 \mu \mathrm{C}$ moving from \mathbf{R} to \mathbf{T} ?

A $135 \mu \mathrm{~J}$
0
B $180 \mu \mathrm{~J}$

C $225 \mu \mathrm{~J}$

D $315 \mu \mathrm{~J}$

Turn over for the next question

| 1 | $\mathbf{7}$ | A switch \mathbf{S} allows capacitor \mathbf{C} to be completely charged by a cell and then completely |
| :--- | :--- | :--- | discharged through an ammeter.

The emf of the cell is 4.0 V and it has negligible internal resistance.
The capacitance of \mathbf{C} is $0.40 \mu \mathrm{~F}$ and there are 8000 charge-discharge cycles every second.

What are the magnitude and direction of the average conventional current in the ammeter?
[1 mark]

	Magnitude of current/ A	Direction of current	
A	1.3×10^{-2}	\mathbf{X} to \mathbf{Y}	\bigcirc
B	1.3×10^{-2}	\mathbf{Y} to \mathbf{X}	\bigcirc
C	2.0×10^{-10}	X to Y	\bigcirc
D	2.0×10^{-10}	\mathbf{Y} to \mathbf{X}	\bigcirc

1	8
A	$30 \mu \mathrm{~F}$ capacitor is charged by connecting it to a battery of emf 4.0 V .

The capacitor is then discharged through a $500 \mathrm{k} \Omega$ resistor.
The time constant for the circuit is T.
Which is correct?

A T is 15 ms .
B Q_{0} is $12 \mu \mathrm{C}$.

C After a time T the pd across the capacitor is 1.5 V .
D After a time $2 T$ the charge on the capacitor is $Q_{0} e^{2}$.
$1 \mathbf{9}$ Capacitor \mathbf{X} of capacitance C has square plates of side length l and separation d and is made with a dielectric of relative permittivity ε.
Capacitor \mathbf{Y} has square plates of side length $3 l$ and separation $\frac{d}{3}$ and is made with a dielectric of relative permittivity $\frac{\varepsilon}{3}$.

What is the capacitance of Y ?

A $\frac{C}{27}$
0

B $\frac{C}{9}$

C 9 C \square

D $27 C$
0

| $\mathbf{2}$ | $\mathbf{0}$ A parallel plate capacitor is connected across a battery and the energy stored in the |
| :--- | :--- | capacitor is E.

Without disconnecting the battery, the separation of the plates is halved.
What is the energy now stored in the capacitor?

A $0.5 E$
0
B E \square
C $2 E$

D $4 E$

21 A fully charged capacitor of capacitance 2.0 mF discharges through a $15 \mathrm{k} \Omega$ resistor. What fraction of the stored energy remains after 1.0 minute?
A $\frac{1}{4}$ \square
B $\frac{1}{e^{2}}$

C $\frac{1}{16}$

D $\frac{1}{e^{4}}$ \square

22 A horizontal wire of length 0.25 m carrying a current of 3.0 A is perpendicular to a magnetic field. The mass of the wire is $3.0 \times 10^{-3} \mathrm{~kg}$ and the weight of the wire is supported in equilibrium by the magnetic field.

What is the flux density of the magnetic field?

A 2.6 T

B $3.9 \times 10^{-2} \mathrm{~T}$

C $2.2 \times 10^{-2} \mathrm{~T}$ \qquad
D $4.0 \times 10^{-3} \mathrm{~T}$ \square

23 A coil is rotated at frequency f in a uniform magnetic field.
The magnetic flux linking the coil is a maximum at time t_{1} and the emf induced in the coil is a maximum at time t_{2}.

What is the smallest value of $t_{1}-t_{2}$?

A 0

B $\frac{1}{4 f}$

C $\frac{1}{2 f}$ \square

D $\frac{3}{4 f}$

A second resistor of resistance $2 R$ carries an alternating current with peak value I.
What is the power dissipated in the second resistor?

A $\sqrt{2} P$
B P \square
C $2 P$

D $4 P$ \square

2	5

A All gold atoms are not alike.
B Alpha particles are helium nuclei.
C Some particles were deflected through angles greater than 90°.
D The motion of most alpha particles was reversed.

$\mathbf{2}$	6
Which row is correct for α, β and γ radiation?	

		α	β	γ	
A	Is it deflected by a magnetic field?	yes	yes	no	0
B	Is it deflected by an electric field?	yes	yes	yes	0
C	Does it have a positive charge?	yes	no	yes	-
D	Does it come from outside the nucleus?	no	yes	no	\bigcirc

 Nuclide \mathbf{P} has a half-life of 2 days and nuclide \mathbf{Q} has a half-life of 4 days. What is the total mass of nuclides \mathbf{P} and \mathbf{Q} after 12 days?

A 3.1 g \square
B 12.5 g \square
C 15.6 g \square
D 18.8 g \square

28 A nuclide has a half-life of 10 ms . The decay constant for this nuclide lies between

A $1 \mathrm{~s}^{-1}$ and $10 \mathrm{~s}^{-1}$.
B $10 \mathrm{~s}^{-1}$ and $10^{2} \mathrm{~s}^{-1}$. ○

C $10^{2} \mathrm{~s}^{-1}$ and $10^{3} \mathrm{~s}^{-1}$.
D $10^{3} \mathrm{~s}^{-1}$ and $10^{6} \mathrm{~s}^{-1}$.

2	9	Which provides evidence for the existence of energy levels in nuclei?

A the Rutherford alpha particle scattering experiment \square
B the existence of X -ray line spectra
C the existence of gamma radiation
D electron diffraction by crystals

3	$\mathbf{0}$ Which is not true for gamma radiation?

A It is more penetrating than alpha or beta radiation of the same energy through the same material.

B Its intensity is inversely proportional to the square of the distance from its source.

C It is emitted with discrete frequencies.

D When it is absorbed it makes the absorber radioactive.

| 3 | $\mathbf{1}$ | In a thermal reactor, induced fission occurs when a ${ }_{92}^{235}$ U nucleus captures a neutron. |
| :--- | :--- | :--- | Which statement is true?

A The moderator absorbs excess neutrons.

B A large number of neutrons should be produced per fission to
 sustain the reaction.

C Slow neutrons are required for this induced fission.

D The control rods slow down neutrons.

 Write the question numbers in the left-hand margin.

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

