Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.1	X – step-up transformer	2 marks for 3 correct answers	2	AO1 3.6.2 a
	Y – transmission cable	1 mark for 1 or 2 correct answers		
	Z – step-down transformer			

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.2	the electricity distribution is more efficient		1	AO1 3.6.2 b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.3	0.02 s		1	AO2 3.6.3 b c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.4	_	allow ecf from Question 01.3		AO2 3.6.3 b c
	frequency = $\frac{1}{0.02}$		1	
	50 (Hz)		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.5	the current continually changes direction		1	AO1 3.6.3 b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.6	0.40 × 2		1	AO2 3.6.5 f
	0.80 (kW h)	allow 0.8	1	3.0.51

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
01.7	0.80 × 0.12	allow ecf from Question 01.6	1	AO2 3.6.5 f
	\$ 0.096	allow 0.10	1	

Total Question 1		11
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.1	energy		1	AO1 3.3.1 a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.2	A has a higher frequency	allow shorter wavelength allow there are more peaks / waves on the screen	1	AO1 3.3.3 b g

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.3	B has a greater amplitude	allow higher peaks	1	AO1 3.3.3 b g

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.4	330 = f × 0.11		1	AO2 3.3.1 h
	$f = \frac{330}{0.11}$		1	3.3.111
	3000 (Hz)		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.5	bar drawn to height 4500 for glass and bar drawn to height 3300 for gold and		2	AO2 3.3.1a
	bar drawn to height 1500 for water	allow + or – ½ square for each bar 1 mark if 2 bars drawn correctly		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.6	material is a categoric variable	allow data is not continuous	1	AO4 3.3.1 a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.7	the particles in a liquid are closer together (than the particles in a gas)	allow a liquid has a higher density than a gas	1	AO3 3.3.3.a 3.4.1 a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.8	20 000 Hz		1	AO1 3.3.3 a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.9	reflection		1	AO1 3.3.3 c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
02.10	330 × 0.0020		1	AO2 3.3.3 g
	0.66 (m)		1	3.3.3 g
	66 (cm)	allow a maximum of 2 marks if the distance / time is halved	1	

Total Question 2		15
------------------	--	----

Question	Answers	Mark	AO/ Spec. Ref.
03.1	Level 3: The plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6	AO1 3.5.1 n
	Level 2: The plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3–4	
	Level 1: The plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content	0	
	 Indicative content: resistor connected to battery variable resistor connected in series variable resistor or variable power supply used to vary the potential difference ammeter connected in series voltmeter connected in parallel change the value of the variable resistor or variable power supply use the ammeter to measure the current (through resistor) use voltmeter to measure the potential difference (across resistor) take readings as the value of the variable resistor is changed plot a graph of current against potential difference graph should be a straight line through the origin 		
	1		

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.2	10 = 0.40 × R		1	AO2
	$R = \frac{10}{0.40}$		1	AO1
	25		1	AO1
	Ω		1	AO1
		3 calculation marks can be gained by using any pair of readings from the line in Figure 7		3.5.1 h

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
03.3	both have a constant resistance at low currents		1	AO1 3.5.1 i m
	the resistor has a constant resistance at high currents		1	
	the resistance of the filament lamp increases (as the temperature increases)		1	

|--|

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.1	resultant force is zero		1	AO1 3.1.1 a
	two forces are equal in size		1	3.1.1 a
	and opposite in direction	allow weight and tension	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.2	from A to B gravitational potential energy is transferred to kinetic energy	allow from A to B gravitational potential energy decreases and kinetic energy increases	1	AO1 3.2.2 b
	from B to C kinetic energy is transferred to gravitational potential energy	allow from B to C kinetic energy decreases and gravitational potential energy increases	1	
	kinetic energy is at a maximum at B and kinetic energy is zero at A and C or gravitational potential energy is at a maximum at A and C and gravitational potential energy is at a			
	potential energy is at a minimum at B			

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.3	during one swing the pendulum bob moves from B to C to A and back to B	allow during one swing the pendulum bob moves from A to C and back again	1	AO4 3.2.2 b
	use the stop clock to time multiple swings		1	
	divide the number of (complete) swings by the time taken	allow counting the number of swings in a longer time period	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
04.4	air resistance	allow friction / drag	1	AO3 3.2.1 b
	(does work on the paper cone) dissipating energy to the surroundings		1	

Total Question 4		11	
------------------	--	----	--

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.1	visible light and X-rays travel at the same speed through a vacuum	allow they can both be diffracted/reflected/refracted allow they both transfer energy	1	AO1 3.3.2 b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.2	 Any 3 from: X-rays have a higher frequency than visible light X-rays have a shorter wavelength than visible light X-rays are ionising and visible light is not X-rays are more penetrating than visible light 	allow X-rays can cause cancer, visible light does not allow X-rays are higher energy waves than visible light	3	AO1 3.3.2 j

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.3	(a wave which its) oscillations are perpendicular to the direction of energy transfer of the wave	allow 90° for perpendicular	1	AO1 3.3.1 a

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.4	X-rays can be transmitted through soft-sided container	allow non-metal for soft- sided container	1	AO3 3.3.2 k
	but X-rays are strongly absorbed by metal		1	
	X-rays affect photographic film so the contrast can be seen	allow the contrast can be detected on a computer / CCD	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
05.5	 any two from: only receives a small dose low dose of X-ray does not harm cells very low risk of causing cancer X-ray scanner turned on after the driver has gone through driver in metal cab which absorbs the X-rays. 		2	AO3 3.3.2 i

Total Question 5		10
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.1	meter detects background radiation		1	AO1 3.7.2 a d
	which is not constant	dependent on the 1st mp	1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.2	222, 4		1	AO2 3.7.2 f
	86, 2		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.3	reduce the amount of gamma radiation leaving the box		1	AO1 3.7.2 c

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.4	any two from: • wear eye protection • wear gloves • keep at arm's length • use tongs to handle source • point away from doctor • put signs on the door • keep source out of box for as little time as possible • wear a lead-lined vest.	allow wear goggles	2	AO1 3.7.2 i

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.5	$\frac{6400}{1600}$ = 4 half lives		1	AO2 3.7.2 h
	$\left(\frac{1}{2}\right)^4 \times 80$	allow 80 – 40 – 20 – 10 – 5	1	
	5 (counts per second)		1	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
06.6	irradiation is when an object is exposed to ionising radiation		1	AO1 3.7.2 i
	contamination is when an object has unwanted radioactive material deposited on it		1	
	contaminated objects become radioactive but irradiated objects do not		1	

Question	Answers	Mark	AO/ Spec. Ref.
06.7	Level 2: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	3–4	AO3 3.7.2 g j
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1–2	
	No relevant content	0	
	 Indicative content: Technetium-99 has a shorter half-life so does not stay in body long enough to harm it Technetium-99 has a long enough half-life to be transported around the body Technetium-99 does not emit alpha which is highly ionising Technetium-99 emits gamma radiation which can penetrate the body and be detected outside the body Argon-39 has a half-life that is too long and therefore would stay in the body too long and cause harm to it Lanthanum-117 has a half-life that is too short and so there would not be enough time for it to be transported around the body Radium-226 has a half-life that is too long and therefore would stay in the body too long and cause harm to it Radium-226 emits alpha radiation which is highly ionising Radium-226 emits alpha radiation so is most dangerous when ingested Technetium-99 is the most suitable tracer. To score in level 2 both half-life and type of emission need to be discussed. 		

Total Question 6		17
------------------	--	----

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
07.1	energy transferred is directly proportional to time	allow 1 mark for as time increases the energy increases if directly proportional not scored	2	AO2 3.6.5 a b

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
07.2	change in energy = 1 800 000 J		1	AO2 3.6.5 b c
	power = $\frac{1800000}{1500}$	allow correct substitution using an incorrectly / not converted value for energy	1	
	power = 1200 1200 = 230 × I	allow a correct calculation using an incorrectly / not converted value for energy	1	
		allow correct substitution using their calculated value of power from the correct equation	1	
	$I = \frac{1200}{230}$	allow correct rearrangement using their calculated value of power from the correct equation	1	
	I = 5.2 (A)	allow correct calculation using their calculated value of power from the correct equation	1	
	OR			
	change in energy = 1 800 000 J (1)			
	$230 = \frac{1800000}{Q} (1)$	allow correct substitution		
	$Q = \frac{1800000}{230} (1)$	using an incorrectly / not converted value for energy		

Q = 7826 (1)	allow a correct rearrangement using an incorrectly / not converted value for energy	
$I = \frac{7826}{1500} (1)$ $I = 5.2 (A) (1)$	allow a correct calculation using an incorrectly / not converted value for energy allow correct substitution using their calculated value of charge from the correct equation	
	using their calculated value of charge from the correct equation	

Question	Answers	Extra information	Mark	AO/ Spec. Ref.
07.3	65% of 380 000 = 247 000 J		1	AO2 3.4.1 b
	247 000 = m × 4200 × 19		1	3.4.10
	$m = \frac{247\ 000}{4200 \times 19}$		1	
	m = 3.095 (kg)		1	
	m = 3.1 (kg)	allow any correctly rounded answer from a reasonable calculation	1	
		allow maximum of 2 calculation marks if E=380000 J used to calculate mass		

Total Question 7		13
------------------	--	----